IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp298-303.html
   My bibliography  Save this article

Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes

Author

Listed:
  • Lee, Seul-Yi
  • Kim, Ji-Il
  • Park, Soo-Jin

Abstract

Chemically A-MWCNT (activated multiwalled carbon nanotube)/PANI (polyaniline) composites produced via ultrasonic polymerization of an aniline monomer in the presence of A-MWCNTs were investigated as potential electrode materials for supercapacitors. These composites were compared to pristine MWCNTs and MWCNT/PANI composites. The influence of the pore structure, which developed because of the polymerization process, was investigated by measuring N2 adsorption/desorption isotherms at 77 K. The electrochemical properties of the materials were determined by cyclic voltammetry and galvanostatic charge–discharge cycling measurements in 1 M NaNO3 electrolyte solution, using a three-electrode system at room temperature. The results suggested that the pore structure of the A-MWCNTs could effectively promote the homogenous-dispersion of aniline and consequently result in excellent cycling performance. Furthermore, interaction between the π-conjugated structure of carbon and the quinoid ring of the PANI matrix can lead to enhancement in the charge transfer process.

Suggested Citation

  • Lee, Seul-Yi & Kim, Ji-Il & Park, Soo-Jin, 2014. "Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes," Energy, Elsevier, vol. 78(C), pages 298-303.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:298-303
    DOI: 10.1016/j.energy.2014.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    2. Wang, Kai & Li, Liwei & Zhang, Tiezhu & Liu, Zaifei, 2014. "Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability," Energy, Elsevier, vol. 70(C), pages 612-617.
    3. Kim, Jongmin & Ju, Haeri & Inamdar, Akbar I. & Jo, Yongcheol & Han, J. & Kim, Hyungsang & Im, Hyunsik, 2014. "Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes," Energy, Elsevier, vol. 70(C), pages 473-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christinelli, W.A. & da Trindade, L.G. & Trench, A.B. & Quintans, C.S. & Paranhos, C.M. & Pereira, E.C., 2017. "High-performance energy storage of poly (o-methoxyaniline) film using an ionic liquid as electrolyte," Energy, Elsevier, vol. 141(C), pages 1829-1835.
    2. Shao, Zhou & Li, Hongji & Li, Mingji & Li, Cuiping & Qu, Changqing & Yang, Baohe, 2015. "Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors," Energy, Elsevier, vol. 87(C), pages 578-585.
    3. Miao, Fujun & Shao, Changlu & Li, Xinghua & Lu, Na & Wang, Kexin & Zhang, Xin & Liu, Yichun, 2016. "Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors," Energy, Elsevier, vol. 95(C), pages 233-241.
    4. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2016. "Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors," Applied Energy, Elsevier, vol. 178(C), pages 260-268.
    5. Mirzaeian, Mojtaba & Abbas, Qaisar & Gibson, Des & Mazur, Michal, 2019. "Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications," Energy, Elsevier, vol. 173(C), pages 809-819.
    6. Chen, Yingwen & Xu, Yuan & Chen, Liuliu & Li, Peiwen & Zhu, Shemin & Shen, Shubao, 2015. "Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes," Energy, Elsevier, vol. 88(C), pages 377-384.
    7. Bavio, M.A. & Acosta, G.G. & Kessler, T. & Visintin, A., 2017. "Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline - carbon nanotubes," Energy, Elsevier, vol. 130(C), pages 22-28.
    8. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Keliang & Cao, Yuhe & Wang, Xiaomin & Kharel, Parashu Ram & Gibbons, William & Luo, Bing & Gu, Zhengrong & Fan, Qihua & Metzger, Lloyd, 2016. "Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors," Energy, Elsevier, vol. 101(C), pages 9-15.
    2. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    3. Shao, Zhou & Li, Hongji & Li, Mingji & Li, Cuiping & Qu, Changqing & Yang, Baohe, 2015. "Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors," Energy, Elsevier, vol. 87(C), pages 578-585.
    4. Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
    5. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    6. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    7. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    8. Trieste, S. & Hmam, S. & Olivier, J.-C. & Bourguet, S. & Loron, L., 2015. "Techno-economic optimization of a supercapacitor-based energy storage unit chain: Application on the first quick charge plug-in ferry," Applied Energy, Elsevier, vol. 153(C), pages 3-14.
    9. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    10. Kuzmenko, Volodymyr & Naboka, Olga & Haque, Mazharul & Staaf, Henrik & Göransson, Gert & Gatenholm, Paul & Enoksson, Peter, 2015. "Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors," Energy, Elsevier, vol. 90(P2), pages 1490-1496.
    11. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    12. Budny, Christoph & Madlener, Reinhard & Hilgers, Christoph, 2013. "Economic Feasibility of Pipeline and Underground Reservoir Storage Options for Power-to-Gas Load Balancing," FCN Working Papers 18/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    13. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    14. Graça Gomes, João & Medeiros Pinto, José & Xu, Huijin & Zhao, Changying & Hashim, Haslenda, 2020. "Modeling and planning of the electricity energy system with a high share of renewable supply for Portugal," Energy, Elsevier, vol. 211(C).
    15. Lombardi, Pio & Hänsch, Kathleen & Arendarski, Bartlomiej & Komarnicki, Przemyslaw, 2017. "Information and power terminals: A reliable microgrid infrastructure for use in disaster scenarios," International Journal of Critical Infrastructure Protection, Elsevier, vol. 19(C), pages 49-58.
    16. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    17. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    18. Miao, Fujun & Shao, Changlu & Li, Xinghua & Lu, Na & Wang, Kexin & Zhang, Xin & Liu, Yichun, 2016. "Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors," Energy, Elsevier, vol. 95(C), pages 233-241.
    19. Kai Wang & Wanli Wang & Licheng Wang & Liwei Li, 2020. "An Improved SOC Control Strategy for Electric Vehicle Hybrid Energy Storage Systems," Energies, MDPI, vol. 13(20), pages 1-13, October.
    20. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:298-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.