IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p1075-1081.html
   My bibliography  Save this article

MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction

Author

Listed:
  • Raoof, Jahan-Bakhsh
  • Hosseini, Sayed Reza
  • Ojani, Reza
  • Mandegarzad, Sakineh

Abstract

In this work, metal-organic framework Cu3(BTC)2 [BTC = 1,3,5-benzenetricarboxylate] (commonly known as MOF-199 or HKUST-1), is used as porous template for preparation of a Cu/nanoporous carbon composite. The MOF-derived Cu/nanoporous carbon composite (Cu/NPC composite) is synthesized by direct carbonization of the MOF-199 without any carbon precursor additive. The physical characterization of the solid catalyst is achieved by using a variety of different techniques, including XRD (X-ray powder diffraction), scanning electron microscopy, thermo-gravimetric analysis, and nitrogen physisorption measurements. The electrochemical results have shown that the Cu/NPC composite modified glassy carbon electrode (Cu/NPC/GCE) as a non-platinum electrocatalyst exhibited favorable catalytic activity for hydrogen evolution reaction, in spite of high resistance to faradic process. This behavior can be attributed to existence of Cu metal confirmed by XRD and/or high effective pore surface area (1025 m2 g−1) in the Cu/NPC composite. The electron transfer coefficient and exchange current density for the Cu/NPC/GCE is calculated by Tafel plot at about 0.34 and 1.2 × 10−3 mAcm−2, respectively.

Suggested Citation

  • Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:1075-1081
    DOI: 10.1016/j.energy.2015.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421501083X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Seul-Yi & Kim, Ji-Il & Park, Soo-Jin, 2014. "Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes," Energy, Elsevier, vol. 78(C), pages 298-303.
    2. Omar M. Yaghi & Michael O'Keeffe & Nathan W. Ockwig & Hee K. Chae & Mohamed Eddaoudi & Jaheon Kim, 2003. "Reticular synthesis and the design of new materials," Nature, Nature, vol. 423(6941), pages 705-714, June.
    3. C. Journet & W. K. Maser & P. Bernier & A. Loiseau & M. Lamy de la Chapelle & S. Lefrant & P. Deniard & R. Lee & J. E. Fischer, 1997. "Large-scale production of single-walled carbon nanotubes by the electric-arc technique," Nature, Nature, vol. 388(6644), pages 756-758, August.
    4. Ojani, Reza & Valiollahi, Roudabeh & Raoof, Jahan-Bakhsh, 2014. "Comparison between graphene supported Pt hollow nanospheres and graphene supported Pt solid nanoparticles for hydrogen evolution reaction," Energy, Elsevier, vol. 74(C), pages 871-876.
    5. Lee, Seul-Yi & Kim, Byung-Ju & Park, Soo-Jin, 2014. "Influence of H2O2 treatment on electrochemical activity of mesoporous carbon-supported Pt–Ru catalysts," Energy, Elsevier, vol. 66(C), pages 70-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).
    2. Ensafi, Ali A. & Nabiyan, Afshin & Jafari-Asl, Mehdi & Dinari, Mohammad & Farrokhpour, Hossein & Rezaei, B., 2016. "Galvanic exchange at layered doubled hydroxide/N-doped graphene as an in-situ method to fabricate powerful electrocatalysts for hydrogen evolution reaction," Energy, Elsevier, vol. 116(P1), pages 1087-1096.
    3. Ensafi, Ali A. & Jafari-Asl, Mehdi & Nabiyan, Afshin & Rezaei, B., 2016. "Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions," Energy, Elsevier, vol. 116(P1), pages 392-401.
    4. Monama, Gobeng R. & Mdluli, Siyabonga B. & Mashao, Gloria & Makhafola, Mogwasha D. & Ramohlola, Kabelo E. & Molapo, Kerileng M. & Hato, Mpitloane J. & Makgopa, Katlego & Iwuoha, Emmanuel I. & Modibane, 2018. "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 119(C), pages 62-72.
    5. Chen, Ao & Cheng, Min & Huang, Danlian & Zhang, Gaoxia & Wang, Wenjun & Du, Li & Wang, Guangfu & Liu, Hongda & Chen, Yongxi & Xiao, Wenjun & Shi, Qingkai, 2024. "Versatile metal-free carbon materials from ZIF-8: Insights into construction strategies, properties, applications and structure-activity relationships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
    2. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    3. Mohammadreza Beydaghdari & Fahimeh Hooriabad Saboor & Aziz Babapoor & Vikram V. Karve & Mehrdad Asgari, 2022. "Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment," Energies, MDPI, vol. 15(6), pages 1-34, March.
    4. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Chunyong Liang & Xiaomin Zhang & Yan Zhao & Taizhe Tan & Yongguang Zhang & Zhihong Chen, 2018. "Preparation of Hierarchical Porous Carbon from Waterweed and Its Application in Lithium/Sulfur Batteries," Energies, MDPI, vol. 11(6), pages 1-11, June.
    6. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    7. Chengjun Kang & Kuiwei Yang & Zhaoqiang Zhang & Adam K. Usadi & David C. Calabro & Lisa Saunders Baugh & Yuxiang Wang & Jianwen Jiang & Xiaodong Zou & Zhehao Huang & Dan Zhao, 2022. "Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Christinelli, W.A. & da Trindade, L.G. & Trench, A.B. & Quintans, C.S. & Paranhos, C.M. & Pereira, E.C., 2017. "High-performance energy storage of poly (o-methoxyaniline) film using an ionic liquid as electrolyte," Energy, Elsevier, vol. 141(C), pages 1829-1835.
    9. Sirong Li & Zijun Zhou & Zuoxiu Tie & Bing Wang & Meng Ye & Lei Du & Ran Cui & Wei Liu & Cuihong Wan & Quanyi Liu & Sheng Zhao & Quan Wang & Yihong Zhang & Shuo Zhang & Huigang Zhang & Yan Du & Hui We, 2022. "Data-informed discovery of hydrolytic nanozymes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Miao, Fujun & Shao, Changlu & Li, Xinghua & Lu, Na & Wang, Kexin & Zhang, Xin & Liu, Yichun, 2016. "Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors," Energy, Elsevier, vol. 95(C), pages 233-241.
    11. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    12. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    13. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    14. J. Perego & Charl X. Bezuidenhout & I. Villa & F. Cova & R. Crapanzano & I. Frank & F. Pagano & N. Kratochwill & E. Auffray & S. Bracco & A. Vedda & C. Dujardin & P. E. Sozzani & F. Meinardi & A. Como, 2022. "Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Bavio, M.A. & Acosta, G.G. & Kessler, T. & Visintin, A., 2017. "Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline - carbon nanotubes," Energy, Elsevier, vol. 130(C), pages 22-28.
    17. Monama, Gobeng R. & Mdluli, Siyabonga B. & Mashao, Gloria & Makhafola, Mogwasha D. & Ramohlola, Kabelo E. & Molapo, Kerileng M. & Hato, Mpitloane J. & Makgopa, Katlego & Iwuoha, Emmanuel I. & Modibane, 2018. "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 119(C), pages 62-72.
    18. Zhi-Zhou Ma & Qiao-Hong Li & Zirui Wang & Zhi-Gang Gu & Jian Zhang, 2022. "Electrically regulating nonlinear optical limiting of metal-organic framework film," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    20. Jaimes-Paez, C.D. & Morallón, E. & Cazorla-Amorós, D., 2023. "Few layers graphene-based electrocatalysts for ORR synthesized by electrochemical exfoliation methods," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:1075-1081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.