IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5297-d426645.html
   My bibliography  Save this article

An Improved SOC Control Strategy for Electric Vehicle Hybrid Energy Storage Systems

Author

Listed:
  • Kai Wang

    (School of Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Wanli Wang

    (School of Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Licheng Wang

    (College of Information Engineering, Zhejiang University of Technology, Hangzhou 310014, China)

  • Liwei Li

    (School of Electrical Engineering, Qingdao University, Qingdao 266071, China)

Abstract

In this paper, we propose an optimized power distribution method for hybrid electric energy storage systems for electric vehicles (EVs). The hybrid energy storage system (HESS) uses two isolated soft-switching symmetrical half-bridge bidirectional converters connected to the battery and supercapacitor (SC) as a composite structure of the protection structure. The bidirectional converter can precisely control the charge and discharge of the SC and battery. Spiral wound SCs with mesoporous carbon electrodes are used as the energy storage units of EVs. Under the 1050 operating conditions of the EV driving cycle, the SC acts as a “peak load transfer” with a charge and discharge current of 2 i sc ~3 i bat . An improved energy allocation strategy under state of charge (SOC) control is proposed, that enables SC to charge and discharge with a peak current of approximately 4 i bat . Compared with the pure battery mode, the acceleration performance of the EV is improved by approximately 50%, and the energy loss is reduced by approximately 69%. This strategy accommodates different types of load curves, and helps improve the energy utilization rate and reduce the battery aging effect.

Suggested Citation

  • Kai Wang & Wanli Wang & Licheng Wang & Liwei Li, 2020. "An Improved SOC Control Strategy for Electric Vehicle Hybrid Energy Storage Systems," Energies, MDPI, vol. 13(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5297-:d:426645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Zhang & Kai Wang & Yan-ting Zhou, 2020. "Online State of Charge Estimation of Lithium-Ion Cells Using Particle Filter-Based Hybrid Filtering Approach," Complexity, Hindawi, vol. 2020, pages 1-10, January.
    2. Kai Wang & Liwei Li & Huaixian Yin & Tiezhu Zhang & Wubo Wan, 2015. "Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    3. Kai Wang & Liwei Li & Yong Lan & Peng Dong & Guoting Xia, 2019. "Application Research of Chaotic Carrier Frequency Modulation Technology in Two-Stage Matrix Converter," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, March.
    4. Zhou, Yanting & Wang, Yanan & Wang, Kai & Kang, Le & Peng, Fei & Wang, Licheng & Pang, Jinbo, 2020. "Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors," Applied Energy, Elsevier, vol. 260(C).
    5. Wang, Kai & Li, Liwei & Zhang, Tiezhu & Liu, Zaifei, 2014. "Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability," Energy, Elsevier, vol. 70(C), pages 612-617.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    2. Xiaomin Wu & Shaoyi Li & Shengfeng Gan & Changhui Hou, 2022. "An Adaptive Energy Optimization Method of Hybrid Battery-Supercapacitor Storage System for Uncertain Demand," Energies, MDPI, vol. 15(5), pages 1-12, February.
    3. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    4. Ramzi Saidi & Jean-Christophe Olivier & Mohamed Machmoum & Eric Chauveau, 2021. "Cascaded Centered Moving Average Filters for Energy Management in Multisource Power Systems with a Large Number of Devices," Energies, MDPI, vol. 14(12), pages 1-21, June.
    5. Surender Reddy Salkuti, 2023. "Advanced Technologies for Energy Storage and Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-7, February.
    6. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    2. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    3. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    5. Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
    6. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    7. Murashko, Kirill & Nevstrueva, Daria & Pihlajamäki, Arto & Koiranen, Tuomas & Pyrhönen, Juha, 2017. "Cellulose and activated carbon based flexible electrical double-layer capacitor electrode: Preparation and characterization," Energy, Elsevier, vol. 119(C), pages 435-441.
    8. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    9. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    10. Kuzmenko, Volodymyr & Naboka, Olga & Haque, Mazharul & Staaf, Henrik & Göransson, Gert & Gatenholm, Paul & Enoksson, Peter, 2015. "Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors," Energy, Elsevier, vol. 90(P2), pages 1490-1496.
    11. Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
    12. Miao, Fujun & Shao, Changlu & Li, Xinghua & Lu, Na & Wang, Kexin & Zhang, Xin & Liu, Yichun, 2016. "Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors," Energy, Elsevier, vol. 95(C), pages 233-241.
    13. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    14. Hesham Alhumade & Essam H. Houssein & Hegazy Rezk & Iqbal Ahmed Moujdin & Saad Al-Shahrani, 2023. "Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems," Mathematics, MDPI, vol. 11(4), pages 1-25, February.
    15. Wang, Keliang & Cao, Yuhe & Wang, Xiaomin & Kharel, Parashu Ram & Gibbons, William & Luo, Bing & Gu, Zhengrong & Fan, Qihua & Metzger, Lloyd, 2016. "Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors," Energy, Elsevier, vol. 101(C), pages 9-15.
    16. Zhang, Yuanjian & Huang, Yanjun & Chen, Haibo & Na, Xiaoxiang & Chen, Zheng & Liu, Yonggang, 2021. "Driving behavior oriented torque demand regulation for electric vehicles with single pedal driving," Energy, Elsevier, vol. 228(C).
    17. Weng, Futian & Zhang, Hongwei & Yang, Cai, 2021. "Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 73(C).
    18. Fouda, M.E. & Elwakil, A.S. & Radwan, A.G. & Allagui, A., 2016. "Power and energy analysis of fractional-order electrical energy storage devices," Energy, Elsevier, vol. 111(C), pages 785-792.
    19. Lee, Seul-Yi & Kim, Ji-Il & Park, Soo-Jin, 2014. "Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes," Energy, Elsevier, vol. 78(C), pages 298-303.
    20. Julan Chen & Guangheng Qi & Kai Wang, 2023. "Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5297-:d:426645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.