IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp313-330.html
   My bibliography  Save this article

Fabrication and comprehensive investigation of physicochemical and electrochemical properties of chitosan-silica supported silicotungstic acid nanocomposite membranes for fuel cell applications

Author

Listed:
  • V., Vijayalekshmi
  • Khastgir, Dipak

Abstract

Polymer electrolyte membranes based on organic – inorganic nanocomposites consisting of chitosan and silica supported silicotungstic acid (IHPA) are developed using simple solution casting technique. Compared to pristine chitosan membranes, IHPA incorporated membranes exhibit higher thermal, mechanical, oxidative stabilities and better membrane selectivity due to the strong electrostatic interaction and hydrogen bonding between the polymer, cross linking agent and IHPA nanoparticles. IHPA provides efficient hopping sites which allow the formation of conducting channels, which thereby facilitates the proton conduction under both dry and hydrated conditions significantly. Nanocomposite membrane filled with 5 wt% IHPA has the highest proton conductivity of 9.0 × 10−3 S cm−1 at 100 °C. All the prepared CS-IHPA nanocomposite membranes exhibit better stability against oxidative degradation, water uptake and retention ability, proton conductivity and membrane selectivity. CS-IHPA-5 membrane exhibits the best overall performance as a membrane, which is mainly due to the strong interactions between chitosan matrix and IHPA. CS-IHPA-3 membrane shows high OCV (0.73 V) and maximum power density (54.2 mW cm−2) compared to the other membranes. The present study provides a promising strategy for the design and fabrication of high performance polymer electrolyte membranes for fuel cell applications, which is cost effective and eco-friendly.

Suggested Citation

  • V., Vijayalekshmi & Khastgir, Dipak, 2018. "Fabrication and comprehensive investigation of physicochemical and electrochemical properties of chitosan-silica supported silicotungstic acid nanocomposite membranes for fuel cell applications," Energy, Elsevier, vol. 142(C), pages 313-330.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:313-330
    DOI: 10.1016/j.energy.2017.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sayadi, Parvin & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)," Energy, Elsevier, vol. 94(C), pages 292-303.
    2. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    3. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    4. Lee, Chi-Hung & Chen, Szu-Hsien & Wang, Yen-Zen & Lin, Chao-Chien & Huang, Chih-Kai & Chuang, Ching-Nan & Wang, Chih-Kuang & Hsieh, Kuo-Huang, 2013. "Preparation and characterization of proton exchange membranes based on semi-interpenetrating sulfonated poly(imide-siloxane)/epoxy polymer networks," Energy, Elsevier, vol. 55(C), pages 905-915.
    5. Bhavani, Perumal & Sangeetha, Dharmalingam, 2011. "Preparation and characterization of proton exchange membrane based on SPSEBS/PSU blends for fuel cell applications," Energy, Elsevier, vol. 36(5), pages 3360-3369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Wenjing & Xie, Anjian & Chen, Ping & Huang, Fangzhi & Li, Shikuo & Shen, Yuhua, 2018. "Combustion reaction-derived nitrogen-doped porous carbon as an effective metal-Free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 152(C), pages 333-340.
    2. Pourzare, K. & Mansourpanah, Y. & Farhadi, S. & Sadrabadi, M.M. Hasani & Ulbricht, M., 2022. "Improvement of proton conductivity of magnetically aligned phosphotungstic acid-decorated cobalt oxide embedded Nafion membrane," Energy, Elsevier, vol. 239(PA).
    3. Cha, Dowon & Jeon, Seung Won & Yang, Wonseok & Kim, Dongwoo & Kim, Yongchan, 2018. "Comparative performance evaluation of self-humidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions," Energy, Elsevier, vol. 150(C), pages 320-328.
    4. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
    5. Alipour Moghaddam, Jafar & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2018. "Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications," Energy, Elsevier, vol. 161(C), pages 699-709.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour Moghaddam, Jafar & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2018. "Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications," Energy, Elsevier, vol. 161(C), pages 699-709.
    2. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
    3. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    4. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    5. Nikouei, Mohammad Ali & Oroujzadeh, Maryam & Mehdipour-Ataei, Shahram, 2017. "The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell," Energy, Elsevier, vol. 119(C), pages 77-85.
    6. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    7. Yousefi Tehrani, Mehran & Mirfarsi, Seyed Hesam & Rowshanzamir, Soosan, 2022. "Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study," Renewable Energy, Elsevier, vol. 184(C), pages 182-200.
    8. Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
    9. Yazmín Yorely Rivera-Lugo & Kevin Isaac Pérez-Muñoz & Balter Trujillo-Navarrete & Carolina Silva-Carrillo & Edgar Alonso Reynoso-Soto & Julio Cesar Calva Yañez & Shui Wai Lin & José Roberto Flores-Her, 2020. "PtPd Hybrid Composite Catalysts as Cathodes for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 13(2), pages 1-12, January.
    10. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).
    11. Chu, Tiankuo & Zhang, Ruofan & Wang, Yanbo & Ou, Mingyang & Xie, Meng & Shao, Hangyu & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2021. "Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 219(C).
    12. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    13. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    14. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Roudbari, Mohsen Najafi & Ojani, Reza & Raoof, Jahan Bakhsh, 2019. "Performance improvement of polymer fuel cell by simultaneously inspection of catalyst loading, catalyst content and ionomer using home-made cathodic half-cell and response surface method," Energy, Elsevier, vol. 173(C), pages 151-161.
    16. Ayyaru, Sivasankaran & Dharmalingam, Sangeetha, 2015. "A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application," Energy, Elsevier, vol. 88(C), pages 202-208.
    17. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    18. Pan, Siyu & Cai, Zhuang & Yang, Liu & Tang, Bo & Xu, Xin & Chen, Hun & Ran, Lingling & Jing, Baojian & Zou, Jinlong, 2018. "Exposure of sufficient edge sites on well-crystallized MoSe2 induced by nitrogen doping (Mo−Nx) for Pt: Enhanced co-catalytic activity and methanol tolerance for oxygen reduction," Energy, Elsevier, vol. 159(C), pages 11-20.
    19. Taner, Tolga, 2018. "Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations," Energy, Elsevier, vol. 143(C), pages 284-294.
    20. Prapainainar, Paweena & Du, Zehui & Theampetch, Apichaya & Prapainainar, Chaiwat & Kongkachuichay, Paisan & Holmes, Stuart M., 2020. "Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:313-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.