Exposure of sufficient edge sites on well-crystallized MoSe2 induced by nitrogen doping (Mo−Nx) for Pt: Enhanced co-catalytic activity and methanol tolerance for oxygen reduction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.06.114
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
- Yuan, Wenjing & Xie, Anjian & Chen, Ping & Huang, Fangzhi & Li, Shikuo & Shen, Yuhua, 2018. "Combustion reaction-derived nitrogen-doped porous carbon as an effective metal-Free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 152(C), pages 333-340.
- Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
- Yang, H.N. & Lee, D.C. & Park, K.W. & Kim, W.J., 2015. "Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell," Energy, Elsevier, vol. 89(C), pages 500-510.
- Wang, Wei & Song, Junnan & Kang, Yumao & Chai, Dan & Zhao, Rui & Lei, Ziqiang, 2017. "Sm2O3 embedded in nitrogen doped carbon with mosaic structure: An effective catalyst for oxygen reduction reaction," Energy, Elsevier, vol. 133(C), pages 115-120.
- Döner, Ali & Solmaz, Ramazan & Kardaş, Gülfeza, 2015. "Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell," Energy, Elsevier, vol. 90(P1), pages 1144-1151.
- Sahoo, Madhumita & Ramaprabhu, S., 2017. "Nitrogen and sulfur co-doped porous carbon – is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?," Energy, Elsevier, vol. 119(C), pages 1075-1083.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
- Yuan, Wenjing & Xu, Wanghua & Xie, Anjian & Zhang, Hui & Wang, Cuiping & Shen, Yuhua, 2017. "An effective strategy for the preparation of nitrogen-doped carbon from Imperata cylindrica panicle and its use as a metal-free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 141(C), pages 1324-1331.
- Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
- Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
- Yazmín Yorely Rivera-Lugo & Kevin Isaac Pérez-Muñoz & Balter Trujillo-Navarrete & Carolina Silva-Carrillo & Edgar Alonso Reynoso-Soto & Julio Cesar Calva Yañez & Shui Wai Lin & José Roberto Flores-Her, 2020. "PtPd Hybrid Composite Catalysts as Cathodes for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 13(2), pages 1-12, January.
- Yuan, Wenjing & Xie, Anjian & Chen, Ping & Huang, Fangzhi & Li, Shikuo & Shen, Yuhua, 2018. "Combustion reaction-derived nitrogen-doped porous carbon as an effective metal-Free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 152(C), pages 333-340.
- Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
- Miao, He & Wang, Zhouhang & Wang, Qin & Sun, Shanshan & Xue, Yejian & Wang, Fu & Zhao, Jiapei & Liu, Zhaoping & Yuan, Jinliang, 2018. "A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries," Energy, Elsevier, vol. 154(C), pages 561-570.
- Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).
- Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
- Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
- Mousavi, Seyed Ali & Mehrpooya, Mehdi, 2021. "Fabrication of copper centered metal organic framework and nitrogen, sulfur dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction," Energy, Elsevier, vol. 214(C).
- Yang, H.N. & Lee, W.H. & Choi, B.S. & Ko, Y.D. & Yi, S.C. & Kim, W.J., 2017. "Self-humidifying Pt-C/Pt-TiO2 dual-catalyst electrode membrane assembly for proton-exchange membrane fuel cells," Energy, Elsevier, vol. 120(C), pages 12-19.
- Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
- Fard, Leyla Abolghasemi & Ojani, Reza & Raoof, Jahan Bakhsh & Zare, Ehsan Nazarzadeh & Lakouraj, Moslem Mansour, 2017. "Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoflowers as high-performance catalyst for methanol electrooxidation in alkaline media," Energy, Elsevier, vol. 127(C), pages 419-427.
- Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
- Taner, Tolga, 2018. "Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations," Energy, Elsevier, vol. 143(C), pages 284-294.
- Liu, Zhenning & Li, Zhiyuan & Ma, Jian & Dong, Xu & Ku, Wen & Wang, Mi & Sun, Hang & Liang, Song & Lu, Guolong, 2018. "Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batteries," Energy, Elsevier, vol. 162(C), pages 453-459.
- Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
- Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
More about this item
Keywords
Biomass; Co-catalyst; Methanol tolerance; Molybdenum selenide; Nitrogen doping; Oxygen reduction reaction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:11-20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.