IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221005673.html
   My bibliography  Save this article

A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells

Author

Listed:
  • Ji, Zhaoqi
  • Perez-Page, Maria
  • Chen, Jianuo
  • Rodriguez, Romeo Gonzalez
  • Cai, Rongsheng
  • Haigh, Sarah J.
  • Holmes, Stuart M.

Abstract

Reduced electrochemically exfoliated graphene oxide (rEGO) is combined with carbon black (CB) as a hybrid support material to improve platinum (Pt) catalyst electrochemical activity and durability. Pt/rEGO2-CB3 (rEGO/CB ratio 2/3) retains 71% of initial electrochemical surface area (ECSA) and maintains higher oxygen reduction reaction (ORR) activity compared to Pt/CB after 30000 cycles of the accelerated stress test (AST). In addition, Pt/rEGO2-CB3 shows a 1.8 times improvement in the hydrogen fuel cell performance compared with Pt/CB and is more stable after 24 h at a continuous 0.60 V. The Pt/rEGO2-CB3 promotes the 4e− reaction pathway demonstrated by linear sweep voltammetry (LSV), which leads to greater ORR activity. In addition, the combination of rEGO and CB leads to both enhanced transport properties and improved stability. The Pt particles on both CB and rEGO are less likely to agglomerate in the composite support than in either of the two carbon supports when used alone.

Suggested Citation

  • Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221005673
    DOI: 10.1016/j.energy.2021.120318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221005673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, H.N. & Lee, D.C. & Park, K.W. & Kim, W.J., 2015. "Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell," Energy, Elsevier, vol. 89(C), pages 500-510.
    2. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
    3. Lee, W.H. & Yang, H.N. & Park, K.W. & Choi, B.S. & Yi, S.C. & Kim, W.J., 2016. "Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 96(C), pages 314-324.
    4. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    5. Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
    6. Daş, Elif & Kaplan, Begüm Yarar & Gürsel, Selmiye Alkan & Yurtcan, Ayşe Bayrakçeken, 2019. "Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells," Renewable Energy, Elsevier, vol. 139(C), pages 1099-1110.
    7. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    8. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
    2. Jaimes-Paez, C.D. & Morallón, E. & Cazorla-Amorós, D., 2023. "Few layers graphene-based electrocatalysts for ORR synthesized by electrochemical exfoliation methods," Energy, Elsevier, vol. 278(PA).
    3. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    4. Abdelkareem, Mohammad Ali & Abbas, Qaisar & Sayed, Enas Taha & Shehata, N. & Parambath, J.B.M. & Alami, Abdul Hai & Olabi, A.G., 2024. "Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review," Energy, Elsevier, vol. 299(C).
    5. Eugenio Meloni & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Marco Martino & Vincenzo Palma, 2022. "Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review," Energies, MDPI, vol. 15(10), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    2. Yazmín Yorely Rivera-Lugo & Kevin Isaac Pérez-Muñoz & Balter Trujillo-Navarrete & Carolina Silva-Carrillo & Edgar Alonso Reynoso-Soto & Julio Cesar Calva Yañez & Shui Wai Lin & José Roberto Flores-Her, 2020. "PtPd Hybrid Composite Catalysts as Cathodes for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 13(2), pages 1-12, January.
    3. Pan, Siyu & Cai, Zhuang & Yang, Liu & Tang, Bo & Xu, Xin & Chen, Hun & Ran, Lingling & Jing, Baojian & Zou, Jinlong, 2018. "Exposure of sufficient edge sites on well-crystallized MoSe2 induced by nitrogen doping (Mo−Nx) for Pt: Enhanced co-catalytic activity and methanol tolerance for oxygen reduction," Energy, Elsevier, vol. 159(C), pages 11-20.
    4. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    5. Heidarian, Alireza & Cheung, Sherman C.P. & Ojha, Ruchika & Rosengarten, Gary, 2022. "Effects of current collector shape and configuration on charge percolation and electric conductivity of slurry electrodes for electrochemical systems," Energy, Elsevier, vol. 239(PD).
    6. Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).
    7. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Flores-Hernández, J.R. & Botte, G.G. & Pérez-Sicairos, S. & Romero-Castañon, T. & Reynoso-Soto, E. & Félix-Navarro, R.M., 2019. "Pt-Au nanoparticles on graphene for oxygen reduction reaction: Stability and performance on proton exchange membrane fuel cell," Energy, Elsevier, vol. 181(C), pages 1225-1234.
    8. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    9. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    10. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    12. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    13. Sieben, J.M. & Morallón, E. & Cazorla-Amorós, D., 2013. "Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods," Energy, Elsevier, vol. 58(C), pages 519-526.
    14. Ju, Rongyuan & Wang, Jinhua & Zhang, Meng & Mu, Haibao & Zhang, Guanjun & Yu, Jinlu & Huang, Zuohua, 2023. "Stability and emission characteristics of ammonia/air premixed swirling flames with rotating gliding arc discharge plasma," Energy, Elsevier, vol. 277(C).
    15. D.M.F. Santos & J.R.B. Lourenço & D. Macciò & A. Saccone & C.A.C. Sequeira & J.L. Figueiredo, 2020. "Ethanol Electrooxidation at Platinum-Rare Earth (RE = Ce, Sm, Ho, Dy) Binary Alloys," Energies, MDPI, vol. 13(7), pages 1-21, April.
    16. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    17. Weng, Baicheng & Wu, Zhu & Li, Zhilin & Yang, Hui, 2012. "Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application," Energy, Elsevier, vol. 38(1), pages 205-211.
    18. Wang, Mingli & Ruan, Jiafen & Zhang, Jian & Jiang, Yefan & Gao, Fei & Zhang, Xin & Rahman, Ehsanur & Guo, Juncheng, 2024. "Modeling, thermodynamic performance analysis, and parameter optimization of a hybrid power generation system coupling thermogalvanic cells with alkaline fuel cells," Energy, Elsevier, vol. 292(C).
    19. Sun, Shaohui & Yan, Wei & Sun, Peiqin & Chen, Junwu, 2012. "Thermodynamic analysis of ethanol reforming for hydrogen production," Energy, Elsevier, vol. 44(1), pages 911-924.
    20. Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221005673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.