IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220327304.html
   My bibliography  Save this article

Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack

Author

Listed:
  • Chu, Tiankuo
  • Zhang, Ruofan
  • Wang, Yanbo
  • Ou, Mingyang
  • Xie, Meng
  • Shao, Hangyu
  • Yang, Daijun
  • Li, Bing
  • Ming, Pingwen
  • Zhang, Cunman

Abstract

Insufficient durability of proton exchange membrane fuel cells (PEMFCs) remains one of the important factors hindering their large-scale commercial applications. To investigate the degradation mechanism, we describe the durability test of 10-kW metal plate fuel cell stack containing 30 cells under dynamic driving cycles. After 600 h of testing, the mean voltage decay percentage of the stack under the rated current densities of 1000 mA cm−2 is 2.67%. A semi-empirical model is introduced to predict the remaining useful life of the stack, and the result satisfies the 5000 h target set by the department of energy (DOE). Three cells with the highest, moderate, and lowest rate of decay are disassembled and characterized by electrochemical and physical methods. Scanning electron microscopy (SEM) shows that the cross-section of the cathode catalyst layer (CL) of the 30# MEA has the lowest thickness of 8.45 μm compared with the fresh sample and other samples. Transmission electron microscopy (TEM) shows serious agglomeration of the 30# catalyst. These observations led to serious performance degradation in the 30# cell. The defects in the design of the stack structure leads to the attenuation of the consistency of the stack and further explains stack performance degradation.

Suggested Citation

  • Chu, Tiankuo & Zhang, Ruofan & Wang, Yanbo & Ou, Mingyang & Xie, Meng & Shao, Hangyu & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2021. "Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327304
    DOI: 10.1016/j.energy.2020.119623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barzegari, Mohammad Mahdi & Rahgoshay, Seyed Majid & Mohammadpour, Lliya & Toghraie, Davood, 2019. "Performance prediction and analysis of a dead-end PEMFC stack using data-driven dynamic model," Energy, Elsevier, vol. 188(C).
    2. Chen, Ben & Ke, Wandi & Luo, Maji & Wang, Jun & Tu, Zhengkai & Pan, Mu & Zhang, Haining & Liu, Xiaowei & Liu, Wei, 2015. "Operation characteristics and carbon corrosion of PEMFC (Proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization," Energy, Elsevier, vol. 91(C), pages 799-806.
    3. Sayadi, Parvin & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)," Energy, Elsevier, vol. 94(C), pages 292-303.
    4. Ijaodola, O.S. & El- Hassan, Zaki & Ogungbemi, E. & Khatib, F.N. & Wilberforce, Tabbi & Thompson, James & Olabi, A.G., 2019. "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 179(C), pages 246-267.
    5. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    6. Jouin, Marine & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine, 2016. "Degradations analysis and aging modeling for health assessment and prognostics of PEMFC," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 78-95.
    7. Alipour Moghaddam, Jafar & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2018. "Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications," Energy, Elsevier, vol. 161(C), pages 699-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yange & Zhou, Xiangyang & Li, Bing & Zhang, Cunman, 2021. "Failure of cathode gas diffusion layer in 1 kW fuel cell stack under new European driving cycle," Applied Energy, Elsevier, vol. 303(C).
    2. Chen, Dongfang & Wu, Wenlong & Chang, Kuanyu & Li, Yuehua & Pei, Pucheng & Xu, Xiaoming, 2023. "Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization," Energy, Elsevier, vol. 285(C).
    3. Chu, Tiankuo & Wang, Qinpu & Xie, Meng & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test," Energy, Elsevier, vol. 258(C).
    4. Chu, Tiankuo & Xie, Meng & Yu, Yue & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Experimental study of the influence of dynamic load cycle and operating parameters on the durability of PEMFC," Energy, Elsevier, vol. 239(PD).
    5. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    6. Zijun Li & Jianguo Wang & Shubo Wang & Weiwei Li & Xiaofeng Xie, 2023. "Liquid Water Transport Characteristics and Droplet Dynamics of Proton Exchange Membrane Fuel Cells with 3D Wave Channel," Energies, MDPI, vol. 16(16), pages 1-19, August.
    7. Saka, Kenan & Orhan, Mehmet Fatih, 2022. "Analysis of stack operating conditions for a polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 258(C).
    8. Suárez, Christian & Toharias, Baltasar & Salva Aguirre, María & Chesalkin, Artem & Rosa, Felipe & Iranzo, Alfredo, 2023. "Experimental dynamic load cycling and current density measurements of different inlet/outlet configurations of a parallel-serpentine PEMFC," Energy, Elsevier, vol. 283(C).
    9. Yang, Yange & Li, Xiang & Tang, Fumin & Ming, Pingwen & Li, Bing & Zhang, Cunman, 2022. "Power evolution of fuel cell stack driven by anode gas diffusion layer degradation," Applied Energy, Elsevier, vol. 313(C).
    10. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    11. Xiao, Biao & Zhao, Junjie & Fan, Lixin & Liu, Yang & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Effects of moisture dehumidification on the performance and degradation of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 245(C).
    12. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    13. Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
    14. Yang, Yange & Li, Xiang & Chu, Tiankuo & Li, Bing & Zhang, Cunman, 2022. "Property evolution of gas diffusion layer and performance shrink of fuel cell during operation," Renewable Energy, Elsevier, vol. 194(C), pages 596-603.
    15. Huang, Weifeng & Niu, Tong & Zhang, Caizhi & Fu, Zuhang & Zhang, Yuqi & Zhou, Weijiang & Pan, Zehua & Zhang, Kaiqing, 2023. "Experimental study of the performance degradation of proton exchange membrane fuel cell based on a multi-module stack under selected load profiles by clustering algorithm," Energy, Elsevier, vol. 270(C).
    16. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    2. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    4. Bai, Xingying & Luo, Lizhong & Huang, Bi & Jian, Qifei & Cheng, Zongyi, 2022. "Performance improvement of proton exchange membrane fuel cell stack by dual-path hydrogen supply," Energy, Elsevier, vol. 246(C).
    5. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    6. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    7. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).
    8. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    9. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    10. Rezk, Hegazy & Aly, Mokhtar & Fathy, Ahmed, 2021. "A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT," Energy, Elsevier, vol. 234(C).
    11. Kermani, M.J. & Moein-Jahromi, M. & Hasheminasab, M.R. & Ebrahimi, F. & Wei, L. & Guo, J. & Jiang, F.M., 2022. "Application of a foam-based functionally graded porous material flow-distributor to PEM fuel cells," Energy, Elsevier, vol. 254(PB).
    12. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Qian, Zhang & Hongwei, Wang & Chunlei, Liu & Yi, An, 2024. "Establishment and identification of MIMO fractional Hammerstein model with colored noise for PEMFC system," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Suárez, Christian & Iranzo, Alfredo & Toharias, Baltasar & Rosa, Felipe, 2022. "Experimental and numerical Investigation on the design of a bioinspired PEM fuel cell," Energy, Elsevier, vol. 257(C).
    15. Hasanien, Hany M. & Shaheen, Mohamed A.M. & Turky, Rania A. & Qais, Mohammed H. & Alghuwainem, Saad & Kamel, Salah & Tostado-Véliz, Marcos & Jurado, Francisco, 2022. "Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm," Energy, Elsevier, vol. 247(C).
    16. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    17. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    18. Zhang, Yuntian & Zuo, Wei & E, Jiaqiang & Li, Jing & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery," Energy, Elsevier, vol. 248(C).
    19. Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
    20. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.