IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i1p262-279.html
   My bibliography  Save this article

On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty

Author

Listed:
  • Escudero, Laureano F.
  • Monge, Juan F.
  • Rodríguez-Chía, Antonio M.

Abstract

This study focuses on the development of a mixed binary primal-dual bilinear model for multi-period bilevel network expansion planning under uncertainty, where pricing-based equilibrated strategic and operational decisions are to be made. The periodwise dependent parameters’ uncertainty is represented by a finite set of scenarios. Pricing-based equilibrium is required in the models to be optimized at the nodes of a multi-period scenario tree. Given the size of the models, it is unrealistic to seek an optimal solution. Several versions of a Stochastic Nested Decomposition matheuristic algorithm are presented for problem solving. Additionally, an approach based on a stagewise-related Stochastic Lagrangean Decomposition is also considered together with a Frank-Wolfe Progressive Hedging-based algorithm. The state step variables device is key for the performance of both approaches. The solution’s optimality gap is computed for three out of the four solution providers that are presented. An extension of the Toll Assignment Problem is considered as a pilot case. A broad computational experience is reported.

Suggested Citation

  • Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:262-279
    DOI: 10.1016/j.ejor.2020.03.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720302629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.03.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kovacevic, Raimund M. & Pflug, Georg Ch., 2014. "Electricity swing option pricing by stochastic bilevel optimization: A survey and new approaches," European Journal of Operational Research, Elsevier, vol. 237(2), pages 389-403.
    2. Fischetti, Matteo & Monaci, Michele, 2020. "A branch-and-cut algorithm for Mixed-Integer Bilinear Programming," European Journal of Operational Research, Elsevier, vol. 282(2), pages 506-514.
    3. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    4. Aldasoro, Unai & Escudero, Laureano F. & Merino, María & Pérez, Gloria, 2017. "A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0–1 problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 590-606.
    5. Dempe, Stephan & Kalashnikov, Vyacheslav V. & Pérez-Valdés, Gerardo A. & Kalashnykova, Nataliya I., 2011. "Natural gas bilevel cash-out problem: Convergence of a penalty function method," European Journal of Operational Research, Elsevier, vol. 215(3), pages 532-538, December.
    6. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2008. "Joint Design and Pricing on a Network," Operations Research, INFORMS, vol. 56(5), pages 1104-1115, October.
    7. Laureano F. Escudero & Juan F. Monge, 2018. "On capacity expansion planning under strategic and operational uncertainties based on stochastic dominance risk averse management," Computational Management Science, Springer, vol. 15(3), pages 479-500, October.
    8. Lara, Cristiana L. & Mallapragada, Dharik S. & Papageorgiou, Dimitri J. & Venkatesh, Aranya & Grossmann, Ignacio E., 2018. "Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1037-1054.
    9. Francisco López-Ramos & Stefano Nasini & Armando Guarnaschelli, 2019. "Road network pricing and design for ordinary and hazmat vehicles: Integrated model and specialized local search," Post-Print hal-02510066, HAL.
    10. Boomsma, Trine Krogh & Juul, Nina & Fleten, Stein-Erik, 2014. "Bidding in sequential electricity markets: The Nordic case," European Journal of Operational Research, Elsevier, vol. 238(3), pages 797-809.
    11. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    12. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    13. Unai Aldasoro & Laureano Escudero & María Merino & Juan Monge & Gloria Pérez, 2015. "On parallelization of a stochastic dynamic programming algorithm for solving large-scale mixed 0–1 problems under uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 703-742, October.
    14. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, August.
    15. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    16. Stephan Dempe & Sergey Ivanov & Andrey Naumov, 2017. "Reduction of the bilevel stochastic optimization problem with quantile objective function to a mixed‐integer problem," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(5), pages 544-554, September.
    17. Gregory Steeger & Steffen Rebennack, 2015. "Strategic bidding for multiple price-maker hydroelectric producers," IISE Transactions, Taylor & Francis Journals, vol. 47(9), pages 1013-1031, September.
    18. Fleten, Stein-Erik & Kristoffersen, Trine Krogh, 2007. "Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer," European Journal of Operational Research, Elsevier, vol. 181(2), pages 916-928, September.
    19. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2000. "A Bilevel Model and Solution Algorithm for a Freight Tariff-Setting Problem," Transportation Science, INFORMS, vol. 34(3), pages 289-302, August.
    20. Mousavian, Seyedamirabbas & Conejo, Antonio J. & Sioshansi, Ramteen, 2020. "Equilibria in investment and spot electricity markets: A conjectural-variations approach," European Journal of Operational Research, Elsevier, vol. 281(1), pages 129-140.
    21. Dali Zhang & Huifu Xu & Yue Wu, 2010. "A two stage stochastic equilibrium model for electricity markets with two way contracts," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 1-45, February.
    22. Cerisola, Santiago & Latorre, Jesus M. & Ramos, Andres, 2012. "Stochastic dual dynamic programming applied to nonconvex hydrothermal models," European Journal of Operational Research, Elsevier, vol. 218(3), pages 687-697.
    23. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    24. Lemaréchal, C. & Nemirovskii, A. & Nesterov, Y., 1995. "New variants of bundle methods," LIDAM Reprints CORE 1166, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    25. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2001. "A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network," Transportation Science, INFORMS, vol. 35(4), pages 345-358, November.
    26. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    27. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    28. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    29. Yiduo Zhan & Qipeng P. Zheng, 2018. "A multistage decision-dependent stochastic bilevel programming approach for power generation investment expansion planning," IISE Transactions, Taylor & Francis Journals, vol. 50(8), pages 720-734, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lebing Wang & Jian Gang Jin & Gleb Sibul & Yi Wei, 2023. "Designing Metro Network Expansion: Deterministic and Robust Optimization Models," Networks and Spatial Economics, Springer, vol. 23(1), pages 317-347, March.
    2. Laureano F. Escudero & Juan F. Monge, 2021. "On Multistage Multiscale Stochastic Capacitated Multiple Allocation Hub Network Expansion Planning," Mathematics, MDPI, vol. 9(24), pages 1-39, December.
    3. Carlos Henggeler Antunes & Maria João Alves & Billur Ecer, 2020. "Bilevel optimization to deal with demand response in power grids: models, methods and challenges," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 814-842, October.
    4. Alcaraz, Javier & Aparicio, Juan & Monge, Juan Fco & Ramón, Nuria, 2022. "Weight profiles in cross-efficiency evaluation based on hypervolume maximization," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    5. Beraldi, Patrizia & Khodaparasti, Sara, 2023. "Designing electricity tariffs in the retail market: A stochastic bi-level approach," International Journal of Production Economics, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    2. Lohmann, Timo & Hering, Amanda S. & Rebennack, Steffen, 2016. "Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling," European Journal of Operational Research, Elsevier, vol. 255(1), pages 243-258.
    3. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    4. İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.
    5. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    6. Cadarso, Luis & Escudero, Laureano F. & Marín, Angel, 2018. "On strategic multistage operational two-stage stochastic 0–1 optimization for the Rapid Transit Network Design problem," European Journal of Operational Research, Elsevier, vol. 271(2), pages 577-593.
    7. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    8. Séguin, Sara & Fleten, Stein-Erik & Côté, Pascal & Pichler, Alois & Audet, Charles, 2017. "Stochastic short-term hydropower planning with inflow scenario trees," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1156-1168.
    9. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    10. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    11. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
    12. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    13. Christine Tawfik & Sabine Limbourg, 2019. "A Bilevel Model for Network Design and Pricing Based on a Level-of-Service Assessment," Transportation Science, INFORMS, vol. 53(6), pages 1609-1626, November.
    14. Afşar, Sezin & Brotcorne, Luce & Marcotte, Patrice & Savard, Gilles, 2016. "Achieving an optimal trade-off between revenue and energy peak within a smart grid environment," Renewable Energy, Elsevier, vol. 91(C), pages 293-301.
    15. Gómez-Pérez, Jesús D. & Latorre-Canteli, Jesus M. & Ramos, Andres & Perea, Alejandro & Sanz, Pablo & Hernández, Francisco, 2024. "Improving operating policies in stochastic optimization: An application to the medium-term hydrothermal scheduling problem," Applied Energy, Elsevier, vol. 359(C).
    16. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    17. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    18. Martin N. Hjelmeland & Arild Helseth & Magnus Korpås, 2019. "Medium-Term Hydropower Scheduling with Variable Head under Inflow, Energy and Reserve Capacity Price Uncertainty," Energies, MDPI, vol. 12(1), pages 1-15, January.
    19. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    20. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:262-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.