IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v266y2018i2p595-608.html
   My bibliography  Save this article

Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR

Author

Listed:
  • Mahmutoğulları, Ali İrfan
  • Çavuş, Özlem
  • Aktürk, M. Selim

Abstract

Risk-averse mixed-integer multi-stage stochastic programming forms a class of extremely challenging problems since the problem size grows exponentially with the number of stages, the problem is non-convex due to integrality restrictions, and the objective function is nonlinear in general. We propose a scenario tree decomposition approach, namely group subproblem approach, to obtain bounds for such problems with an objective of dynamic mean conditional value-at-risk (mean-CVaR). Our approach does not require any special problem structure such as convexity and linearity, therefore it can be applied to a wide range of problems. We obtain lower bounds by using different convolution of mean-CVaR risk measures and different scenario partition strategies. The upper bounds are obtained through the use of optimal solutions of group subproblems. Using these lower and upper bounds, we propose a solution algorithm for risk-averse mixed-integer multi-stage stochastic problems with mean-CVaR risk measures. We test the performance of the proposed algorithm on a multi-stage stochastic lot sizing problem and compare different choices of lower bounds and partition strategies. Comparison of the proposed algorithm to a commercial solver revealed that, on the average, the proposed algorithm yields 1.13% stronger bounds. The commercial solver requires additional running time more than a factor of five, on the average, to reach the same optimality gap obtained by the proposed algorithm.

Suggested Citation

  • Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
  • Handle: RePEc:eee:ejores:v:266:y:2018:i:2:p:595-608
    DOI: 10.1016/j.ejor.2017.10.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717309517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.10.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    2. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    3. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    4. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    5. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, August.
    6. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    7. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Conditional Risk Mappings," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 544-561, August.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Francesca Maggioni & Elisabetta Allevi & Marida Bertocchi, 2016. "Monotonic bounds in multistage mixed-integer stochastic programming," Computational Management Science, Springer, vol. 13(3), pages 423-457, July.
    10. Jonathan Eckstein & Deniz Eskandani & Jingnan Fan, 2016. "Multilevel Optimization Modeling for Risk-Averse Stochastic Programming," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 112-128, February.
    11. Naomi Miller & Andrzej Ruszczyński, 2011. "Risk-Averse Two-Stage Stochastic Linear Programming: Modeling and Decomposition," Operations Research, INFORMS, vol. 59(1), pages 125-132, February.
    12. Yongpei Guan & Shabbir Ahmed & George L. Nemhauser, 2009. "Cutting Planes for Multistage Stochastic Integer Programs," Operations Research, INFORMS, vol. 57(2), pages 287-298, April.
    13. J. Bonnans & Zhihao Cen & Thibault Christel, 2012. "Energy contracts management by stochastic programming techniques," Annals of Operations Research, Springer, vol. 200(1), pages 199-222, November.
    14. Ricardo Collado & Dávid Papp & Andrzej Ruszczyński, 2012. "Scenario decomposition of risk-averse multistage stochastic programming problems," Annals of Operations Research, Springer, vol. 200(1), pages 147-170, November.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    16. Bruno, Sergio & Ahmed, Shabbir & Shapiro, Alexander & Street, Alexandre, 2016. "Risk neutral and risk averse approaches to multistage renewable investment planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 250(3), pages 979-989.
    17. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghaffarinasab, Nader & Çavuş, Özlem & Kara, Bahar Y., 2023. "A mean-CVaR approach to the risk-averse single allocation hub location problem with flow-dependent economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 32-53.
    2. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    3. Tsay, Calvin, 2024. "A Quantile Neural Network Framework for Twostage Stochastic Optimization," DES - Working Papers. Statistics and Econometrics. WS 43773, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.
    5. Dang, Duc-Cuong & Currie, Christine S.M. & Onggo, Bhakti Stephan & Chaerani, Diah & Achmad, Audi Luqmanul Hakim, 2023. "Budget allocation of food procurement for natural disaster response," European Journal of Operational Research, Elsevier, vol. 311(2), pages 754-768.
    6. Yin, Xuecheng & Büyüktahtakın, İ. Esra & Patel, Bhumi P., 2023. "COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk," European Journal of Operational Research, Elsevier, vol. 304(1), pages 255-275.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    2. Sıtkı Gülten & Andrzej Ruszczyński, 2015. "Two-stage portfolio optimization with higher-order conditional measures of risk," Annals of Operations Research, Springer, vol. 229(1), pages 409-427, June.
    3. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    4. Ricardo Collado & Dávid Papp & Andrzej Ruszczyński, 2012. "Scenario decomposition of risk-averse multistage stochastic programming problems," Annals of Operations Research, Springer, vol. 200(1), pages 147-170, November.
    5. Alois Pichler, 2017. "A quantitative comparison of risk measures," Annals of Operations Research, Springer, vol. 254(1), pages 251-275, July.
    6. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    7. Löhndorf, Nils & Wozabal, David, 2021. "Gas storage valuation in incomplete markets," European Journal of Operational Research, Elsevier, vol. 288(1), pages 318-330.
    8. Georg Ch. Pflug & Alois Pichler, 2016. "Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 682-699, May.
    9. Löhndorf, Nils & Shapiro, Alexander, 2019. "Modeling time-dependent randomness in stochastic dual dynamic programming," European Journal of Operational Research, Elsevier, vol. 273(2), pages 650-661.
    10. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    11. Malekipirbazari, Milad & Çavuş, Özlem, 2024. "Index policy for multiarmed bandit problem with dynamic risk measures," European Journal of Operational Research, Elsevier, vol. 312(2), pages 627-640.
    12. Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
    13. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.
    14. Alois Pichler & Ruben Schlotter, 2020. "Quantification of Risk in Classical Models of Finance," Papers 2004.04397, arXiv.org, revised Feb 2021.
    15. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    16. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    17. R. Tyrrell Rockafellar & Johannes O. Royset, 2018. "Superquantile/CVaR risk measures: second-order theory," Annals of Operations Research, Springer, vol. 262(1), pages 3-28, March.
    18. Collado, Ricardo & Meisel, Stephan & Priekule, Laura, 2017. "Risk-averse stochastic path detection," European Journal of Operational Research, Elsevier, vol. 260(1), pages 195-211.
    19. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    20. Özlem Çavuş & Andrzej Ruszczyński, 2014. "Computational Methods for Risk-Averse Undiscounted Transient Markov Models," Operations Research, INFORMS, vol. 62(2), pages 401-417, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:266:y:2018:i:2:p:595-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.