IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v28y2020i3d10.1007_s11750-020-00573-y.html
   My bibliography  Save this article

Bilevel optimization to deal with demand response in power grids: models, methods and challenges

Author

Listed:
  • Carlos Henggeler Antunes

    (University of Coimbra)

  • Maria João Alves

    (University of Coimbra)

  • Billur Ecer

    (Ankara Yildirim Beyazit University)

Abstract

This paper presents a review of selected models, methods, and challenges associated with the use of bilevel optimization in problems that involve consumers’ demand response arising in the power sector. The main formulations and concepts of bilevel optimization are presented. The importance of demand response as a “dispatchable” resource in the evolution of power networks to smart grids is emphasized. The hierarchical nature of the interaction between decision-makers controlling different sets of variables in several problems involving demand response is highlighted, which establishes bilevel optimization as an adequate approach to decision support. The main concepts and solution approaches to those problems are underlined, in the context of the theoretical, methodological, and computational issues associated with bilevel optimization.

Suggested Citation

  • Carlos Henggeler Antunes & Maria João Alves & Billur Ecer, 2020. "Bilevel optimization to deal with demand response in power grids: models, methods and challenges," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 814-842, October.
  • Handle: RePEc:spr:topjnl:v:28:y:2020:i:3:d:10.1007_s11750-020-00573-y
    DOI: 10.1007/s11750-020-00573-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-020-00573-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-020-00573-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    3. Afşar, Sezin & Brotcorne, Luce & Marcotte, Patrice & Savard, Gilles, 2016. "Achieving an optimal trade-off between revenue and energy peak within a smart grid environment," Renewable Energy, Elsevier, vol. 91(C), pages 293-301.
    4. Quashie, Mike & Marnay, Chris & Bouffard, François & Joós, Géza, 2018. "Optimal planning of microgrid power and operating reserve capacity," Applied Energy, Elsevier, vol. 210(C), pages 1229-1236.
    5. Aussel, Didier & Brotcorne, Luce & Lepaul, Sébastien & von Niederhäusern, Léonard, 2020. "A trilevel model for best response in energy demand-side management," European Journal of Operational Research, Elsevier, vol. 281(2), pages 299-315.
    6. Jerome Bracken & James T. McGill, 1973. "Mathematical Programs with Optimization Problems in the Constraints," Operations Research, INFORMS, vol. 21(1), pages 37-44, February.
    7. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    8. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    9. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    10. Alexander Mitsos, 2010. "Global solution of nonlinear mixed-integer bilevel programs," Journal of Global Optimization, Springer, vol. 47(4), pages 557-582, August.
    11. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh, 2018. "A multi-follower bilevel stochastic programming approach for energy management of combined heat and power micro-grids," Energy, Elsevier, vol. 149(C), pages 135-146.
    12. Soares, Inês & Alves, Maria João & Antunes, Carlos Henggeler, 2020. "Designing time-of-use tariffs in electricity retail markets using a bi-level model – Estimating bounds when the lower level problem cannot be exactly solved," Omega, Elsevier, vol. 93(C).
    13. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    14. Zugno, Marco & Morales, Juan Miguel & Pinson, Pierre & Madsen, Henrik, 2013. "A bilevel model for electricity retailers' participation in a demand response market environment," Energy Economics, Elsevier, vol. 36(C), pages 182-197.
    15. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beraldi, Patrizia & Khodaparasti, Sara, 2023. "Designing electricity tariffs in the retail market: A stochastic bi-level approach," International Journal of Production Economics, Elsevier, vol. 257(C).
    2. Arega Getaneh Abate & Rosana Riccardi & Carlos Ruiz, 2021. "Dynamic tariffs-based demand response in retail electricity market under uncertainty," Papers 2105.03405, arXiv.org, revised Feb 2024.
    3. Henggeler Antunes, Carlos & Alves, Maria João & Soares, Inês, 2022. "A comprehensive and modular set of appliance operation MILP models for demand response optimization," Applied Energy, Elsevier, vol. 320(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Inês & Alves, Maria João & Henggeler Antunes, Carlos, 2021. "A deterministic bounding procedure for the global optimization of a bi-level mixed-integer problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 52-66.
    2. Beraldi, Patrizia & Khodaparasti, Sara, 2023. "Designing electricity tariffs in the retail market: A stochastic bi-level approach," International Journal of Production Economics, Elsevier, vol. 257(C).
    3. Arega Getaneh Abate & Rosana Riccardi & Carlos Ruiz, 2021. "Dynamic tariffs-based demand response in retail electricity market under uncertainty," Papers 2105.03405, arXiv.org, revised Feb 2024.
    4. Tamás Kis & András Kovács & Csaba Mészáros, 2021. "On Optimistic and Pessimistic Bilevel Optimization Models for Demand Response Management," Energies, MDPI, vol. 14(8), pages 1-22, April.
    5. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    6. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    7. Wang, Guangmin & Gao, Ziyou & Xu, Meng, 2019. "Integrating link-based discrete credit charging scheme into discrete network design problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 176-187.
    8. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    9. Ashenafi Woldemariam & Semu Kassa, 2015. "Systematic evolutionary algorithm for general multilevel Stackelberg problems with bounded decision variables (SEAMSP)," Annals of Operations Research, Springer, vol. 229(1), pages 771-790, June.
    10. Anjos, Miguel F. & Brotcorne, Luce & Gomez-Herrera, Juan A., 2021. "Optimal setting of time-and-level-of-use prices for an electricity supplier," Energy, Elsevier, vol. 225(C).
    11. Dajun Yue & Jiyao Gao & Bo Zeng & Fengqi You, 2019. "A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs," Journal of Global Optimization, Springer, vol. 73(1), pages 27-57, January.
    12. Junlong Zhang & Osman Y. Özaltın, 2021. "Bilevel Integer Programs with Stochastic Right-Hand Sides," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1644-1660, October.
    13. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    14. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    15. Hélène Le Cadre & Bernardo Pagnoncelli & Tito Homem-De-Mello & Olivier Beaude, 2018. "Designing Coalition-Based Fair and Stable Pricing Mechanisms Under Private Information on Consumers' Reservation Prices," Working Papers hal-01353763, HAL.
    16. George Kozanidis & Eftychia Kostarelou, 2023. "An Exact Solution Algorithm for Integer Bilevel Programming with Application in Energy Market Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 573-607, May.
    17. Blom, Danny & Smeulders, Bart & Spieksma, Frits, 2024. "Rejection-proof mechanisms for multi-agent kidney exchange," Games and Economic Behavior, Elsevier, vol. 143(C), pages 25-50.
    18. Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
    19. Bucarey, Víctor & Labbé, Martine & Morales, Juan M. & Pineda, Salvador, 2021. "An exact dynamic programming approach to segmented isotonic regression," Omega, Elsevier, vol. 105(C).
    20. Juan Sebastian Roncancio & José Vuelvas & Diego Patino & Carlos Adrián Correa-Flórez, 2022. "Flower Greenhouse Energy Management to Offer Local Flexibility Markets," Energies, MDPI, vol. 15(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:28:y:2020:i:3:d:10.1007_s11750-020-00573-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.