IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v91y2016icp293-301.html
   My bibliography  Save this article

Achieving an optimal trade-off between revenue and energy peak within a smart grid environment

Author

Listed:
  • Afşar, Sezin
  • Brotcorne, Luce
  • Marcotte, Patrice
  • Savard, Gilles

Abstract

In this paper, we consider an energy provider whose goal is to simultaneously set revenue-maximizing prices and meet a peak load constraint. The problem is cast within a bilevel setting where the provider acts as a leader (upper level) that takes into account a smart grid (lower level) that minimizes the sum of users' disutilities. The latter bases its actions on the hourly prices set by the leader, as well as the preference schedules set by the users for each task. We consider both the monopolistic and competitive situations, and validate numerically the potential of this approach to achieve an ‘optimal’ trade-off between three conflicting objectives: revenue, user cost and peak demand.

Suggested Citation

  • Afşar, Sezin & Brotcorne, Luce & Marcotte, Patrice & Savard, Gilles, 2016. "Achieving an optimal trade-off between revenue and energy peak within a smart grid environment," Renewable Energy, Elsevier, vol. 91(C), pages 293-301.
  • Handle: RePEc:eee:renene:v:91:y:2016:i:c:p:293-301
    DOI: 10.1016/j.renene.2016.01.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martine Labbé & Patrice Marcotte & Gilles Savard, 1998. "A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing," Management Science, INFORMS, vol. 44(12-Part-1), pages 1608-1622, December.
    2. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    3. Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
    4. Lujano-Rojas, Juan M. & Monteiro, Cláudio & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimum load management strategy for wind/diesel/battery hybrid power systems," Renewable Energy, Elsevier, vol. 44(C), pages 288-295.
    5. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2001. "A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network," Transportation Science, INFORMS, vol. 35(4), pages 345-358, November.
    6. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2008. "Joint Design and Pricing on a Network," Operations Research, INFORMS, vol. 56(5), pages 1104-1115, October.
    7. Warren, Peter, 2014. "A review of demand-side management policy in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 941-951.
    8. Paul L. Joskow & Catherine D. Wolfram, 2012. "Dynamic Pricing of Electricity," American Economic Review, American Economic Association, vol. 102(3), pages 381-385, May.
    9. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    10. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2000. "A Bilevel Model and Solution Algorithm for a Freight Tariff-Setting Problem," Transportation Science, INFORMS, vol. 34(3), pages 289-302, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. András Kovács, 2021. "Inverse optimization approach to the identification of electricity consumer models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 521-537, June.
    2. Anjos, Miguel F. & Brotcorne, Luce & Gomez-Herrera, Juan A., 2021. "Optimal setting of time-and-level-of-use prices for an electricity supplier," Energy, Elsevier, vol. 225(C).
    3. Aussel, Didier & Brotcorne, Luce & Lepaul, Sébastien & von Niederhäusern, Léonard, 2020. "A trilevel model for best response in energy demand-side management," European Journal of Operational Research, Elsevier, vol. 281(2), pages 299-315.
    4. Lu, Tianguang & Ai, Qian & Wang, Zhaoyu, 2018. "Interactive game vector: A stochastic operation-based pricing mechanism for smart energy systems with coupled-microgrids," Applied Energy, Elsevier, vol. 212(C), pages 1462-1475.
    5. Jacquet, Quentin & van Ackooij, Wim & Alasseur, Clémence & Gaubert, Stéphane, 2024. "Quadratic regularization of bilevel pricing problems and application to electricity retail markets," European Journal of Operational Research, Elsevier, vol. 313(3), pages 841-857.
    6. Viana, Matheus Sabino & Manassero, Giovanni & Udaeta, Miguel E.M., 2018. "Analysis of demand response and photovoltaic distributed generation as resources for power utility planning," Applied Energy, Elsevier, vol. 217(C), pages 456-466.
    7. Carlos Henggeler Antunes & Maria João Alves & Billur Ecer, 2020. "Bilevel optimization to deal with demand response in power grids: models, methods and challenges," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 814-842, October.
    8. Kyritsis, A. & Voglitsis, D. & Papanikolaou, N. & Tselepis, S. & Christodoulou, C. & Gonos, I. & Kalogirou, S.A., 2017. "Evolution of PV systems in Greece and review of applicable solutions for higher penetration levels," Renewable Energy, Elsevier, vol. 109(C), pages 487-499.
    9. Cl'emence Alasseur & Ivar Ekeland & Romuald Elie & Nicol'as Hern'andez Santib'a~nez & Dylan Possamai, 2017. "An adverse selection approach to power pricing," Papers 1706.01934, arXiv.org, revised Sep 2019.
    10. Arega Getaneh Abate & Rosana Riccardi & Carlos Ruiz, 2021. "Dynamic tariff-based demand response in retail electricity market under uncertainty," Papers 2105.03405, arXiv.org, revised Nov 2024.
    11. Liu, Yixin & Guo, Li & Wang, Chengshan, 2018. "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 228(C), pages 130-140.
    12. Khan, Saad Salman & Ahmad, Sadiq & Naeem, Muhammad, 2023. "On-grid joint energy management and trading in uncertain environment," Applied Energy, Elsevier, vol. 330(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    3. Christine Tawfik & Sabine Limbourg, 2019. "A Bilevel Model for Network Design and Pricing Based on a Level-of-Service Assessment," Transportation Science, INFORMS, vol. 53(6), pages 1609-1626, November.
    4. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    5. Tawfik, Christine & Gendron, Bernard & Limbourg, Sabine, 2022. "An iterative two-stage heuristic algorithm for a bilevel service network design and pricing model," European Journal of Operational Research, Elsevier, vol. 300(2), pages 512-526.
    6. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    7. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.
    8. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    9. Patrice Marcotte & Anne Mercier & Gilles Savard & Vedat Verter, 2009. "Toll Policies for Mitigating Hazardous Materials Transport Risk," Transportation Science, INFORMS, vol. 43(2), pages 228-243, May.
    10. Martine Labbé & Alessia Violin, 2016. "Bilevel programming and price setting problems," Annals of Operations Research, Springer, vol. 240(1), pages 141-169, May.
    11. Quang Minh Bui & Bernard Gendron & Margarida Carvalho, 2022. "A Catalog of Formulations for the Network Pricing Problem," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2658-2674, September.
    12. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    13. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    14. van Hoesel, Stan, 2008. "An overview of Stackelberg pricing in networks," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1393-1402, September.
    15. José Correa & Tobias Harks & Vincent J. C. Kreuzen & Jannik Matuschke, 2017. "Fare Evasion in Transit Networks," Operations Research, INFORMS, vol. 65(1), pages 165-183, February.
    16. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    17. Jean Cardinal & Erik D. Demaine & Samuel Fiorini & Gwenaël Joret & Ilan Newman & Oren Weimann, 2013. "The Stackelberg minimum spanning tree game on planar and bounded-treewidth graphs," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 19-46, January.
    18. José Correa & Tobias Harks & Vincent J. C. Kreuzen & Jannik Matuschke, 2017. "Fare Evasion in Transit Networks," Operations Research, INFORMS, vol. 65(1), pages 165-183, February.
    19. Mustapha Bouhtou & Stan van Hoesel & Anton F. van der Kraaij & Jean-Luc Lutton, 2007. "Tariff Optimization in Networks," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 458-469, August.
    20. Baum, Zvi & Palatnik, Ruslana Rachel & Ayalon, Ofira & Elmakis, David & Frant, Shimon, 2019. "Harnessing households to mitigate renewables intermittency in the smart grid," Renewable Energy, Elsevier, vol. 132(C), pages 1216-1229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:91:y:2016:i:c:p:293-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.