IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v271y2018i2p577-593.html
   My bibliography  Save this article

On strategic multistage operational two-stage stochastic 0–1 optimization for the Rapid Transit Network Design problem

Author

Listed:
  • Cadarso, Luis
  • Escudero, Laureano F.
  • Marín, Angel

Abstract

The Rapid Transit Network Design planning problem along a time horizon is treated by considering uncertainty in passenger demand, strategic costs and network disruption. The problem has strategic decisions about the timing to construct stations and edges, and operational decisions on the available network at the periods. The uncertainty in the strategic side is represented in a multistage scenario tree, while the uncertainty in the operational side is represented in two-stage scenario trees which are rooted with strategic nodes. The 0–1 deterministic equivalent model can have very large dimensions. So-called fix-and-relax and lazy matheuristic algorithms, which are based on special features of the problem, are proposed, jointly with dynamic scenario aggregation/de-aggregation schemes. A broad computational experience is presented by considering a network case study taken from the literature, where the problem was only treated as a deterministic 0–1 model. 40 nodes in the strategic multistage tree are considered for passenger demand and investment cost and 8 uncertainties are considered for network disruption in each strategic node, in total 320 uncertain situations are jointly considered. For assessing the validity of the proposal, a computational comparison is performed between the plain use of a state-of-the-art optimization solver and the proposals made in this work. The model is so-large (2.6M constraints and 1.6M binary variables) that the solver alone cannot provide a solution in an affordable time. However, a mixture of the both matheuristics provides a solution with a good optimality gap requiring an affordable elapsed time.

Suggested Citation

  • Cadarso, Luis & Escudero, Laureano F. & Marín, Angel, 2018. "On strategic multistage operational two-stage stochastic 0–1 optimization for the Rapid Transit Network Design problem," European Journal of Operational Research, Elsevier, vol. 271(2), pages 577-593.
  • Handle: RePEc:eee:ejores:v:271:y:2018:i:2:p:577-593
    DOI: 10.1016/j.ejor.2018.05.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718304521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.05.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Marí­n, íngel & Jaramillo, Patricia, 2008. "Urban rapid transit network capacity expansion," European Journal of Operational Research, Elsevier, vol. 191(1), pages 45-60, November.
    4. Aldasoro, Unai & Escudero, Laureano F. & Merino, María & Pérez, Gloria, 2017. "A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0–1 problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 590-606.
    5. An, Kun & Lo, Hong K., 2015. "Robust transit network design with stochastic demand considering development density," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 737-754.
    6. Valentina Cacchiani & Alberto Caprara & Laura Galli & Leo Kroon & Gábor Maróti & Paolo Toth, 2012. "Railway Rolling Stock Planning: Robustness Against Large Disruptions," Transportation Science, INFORMS, vol. 46(2), pages 217-232, May.
    7. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    8. Matteo Fischetti & Domenico Salvagnin & Arrigo Zanette, 2009. "Fast Approaches to Improve the Robustness of a Railway Timetable," Transportation Science, INFORMS, vol. 43(3), pages 321-335, August.
    9. Dillenberger, Christof & Escudero, Laureano F. & Wollensak, Artur & Zhang, Wu, 1994. "On practical resource allocation for production planning and scheduling with period overlapping setups," European Journal of Operational Research, Elsevier, vol. 75(2), pages 275-286, June.
    10. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    11. Gilbert Laporte & Juan A. Mesa, 2015. "The Design of Rapid Transit Networks," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 581-594, Springer.
    12. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, August.
    13. Raimund M. Kovacevic & Georg Ch. Pflug & Maria Teresa Vespucci (ed.), 2013. "Handbook of Risk Management in Energy Production and Trading," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9035-7, April.
    14. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    2. Laureano F. Escudero & Juan F. Monge, 2021. "On Multistage Multiscale Stochastic Capacitated Multiple Allocation Hub Network Expansion Planning," Mathematics, MDPI, vol. 9(24), pages 1-39, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    2. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    3. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    4. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    6. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    7. Chen, Yao & An, Kun, 2021. "Integrated optimization of bus bridging routes and timetables for rail disruptions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 484-498.
    8. Lebing Wang & Jian Gang Jin & Gleb Sibul & Yi Wei, 2023. "Designing Metro Network Expansion: Deterministic and Robust Optimization Models," Networks and Spatial Economics, Springer, vol. 23(1), pages 317-347, March.
    9. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    10. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.
    11. Raimund M. Kovacevic, 2019. "Arbitrage conditions for electricity markets with production and storage," Computational Management Science, Springer, vol. 16(4), pages 671-696, October.
    12. Joris Wagenaar & Ioannis Fragkos & Rob Zuidwijk, 2021. "Integrated Planning for Multimodal Networks with Disruptions and Customer Service Requirements," Transportation Science, INFORMS, vol. 55(1), pages 196-221, 1-2.
    13. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    14. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    15. Ahmad Jafari Ghezelhesar & Ali Bozorgi-Amiri, 2022. "A novel approach to selection of resilient measures portfolio under disruption and uncertainty: a case study of e-payment service providers," Operational Research, Springer, vol. 22(5), pages 5477-5527, November.
    16. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    17. Li, Lu & Lo, Hong K. & Huang, Wei & Xiao, Feng, 2021. "Mixed bus fleet location-routing-scheduling under range uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 155-179.
    18. Anita Schöbel, 2014. "Generalized light robustness and the trade-off between robustness and nominal quality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 161-191, October.
    19. Carrizosa, Emilio & Goerigk, Marc & Schöbel, Anita, 2017. "A biobjective approach to recoverable robustness based on location planning," European Journal of Operational Research, Elsevier, vol. 261(2), pages 421-435.
    20. İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:271:y:2018:i:2:p:577-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.