IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v309y2022i1d10.1007_s10479-021-04388-3.html
   My bibliography  Save this article

Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs

Author

Listed:
  • İ. Esra Büyüktahtakın

    (New Jersey Institute of Technology)

Abstract

This paper presents a new and general approach, named “Stage-t Scenario Dominance,” to solve the risk-averse multi-stage stochastic mixed-integer programs (M-SMIPs). Given a monotonic objective function, our method derives a partial ordering of scenarios by pairwise comparing the realization of uncertain parameters at each time stage under each scenario. Specifically, we derive bounds and implications from the “Stage-t Scenario Dominance” by using the partial ordering of scenarios and solving a subset of individual scenario sub-problems up to stage t. Using these inferences, we generate new cutting planes to tackle the computational difficulty of risk-averse M-SMIPs. We also derive results on the minimum number of scenario-dominance relations generated. We demonstrate the use of this methodology on a stochastic version of the mean-conditional value-at-risk (CVaR) dynamic knapsack problem. Our computational experiments address those instances that have uncertainty, which correspond to the objective, left-hand side, and right-hand side parameters. Computational results show that our “scenario dominance"-based method can reduce the solution time for mean-risk, stochastic, multi-stage, and multi-dimensional knapsack problems with both integer and continuous variables, whose structure is similar to the mean-risk M-SMIPs, with varying risk characteristics by one-to-two orders of magnitude for varying numbers of random variables in each stage. Computational results also demonstrate that strong dominance cuts perform well for those instances with ten random variables in each stage, and ninety random variables in total. The proposed scenario dominance framework is general and can be applied to a wide range of risk-averse and risk-neutral M-SMIP problems.

Suggested Citation

  • İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.
  • Handle: RePEc:spr:annopr:v:309:y:2022:i:1:d:10.1007_s10479-021-04388-3
    DOI: 10.1007/s10479-021-04388-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04388-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04388-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    2. Ilke Bakir & Natashia Boland & Brian Dandurand & Alan Erera, 2020. "Sampling Scenario Set Partition Dual Bounds for Multistage Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 145-163, January.
    3. Albert Madansky, 1960. "Inequalities for Stochastic Linear Programming Problems," Management Science, INFORMS, vol. 6(2), pages 197-204, January.
    4. Francesca Maggioni & Elisabetta Allevi & Marida Bertocchi, 2014. "Bounds in Multistage Linear Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 200-229, October.
    5. Francesca Maggioni & Elisabetta Allevi & Marida Bertocchi, 2016. "Monotonic bounds in multistage mixed-integer stochastic programming," Computational Management Science, Springer, vol. 13(3), pages 423-457, July.
    6. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    7. Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.
    8. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    9. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    10. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    11. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    12. Jean-Paul Watson & David Woodruff, 2011. "Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems," Computational Management Science, Springer, vol. 8(4), pages 355-370, November.
    13. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    14. Yongpei Guan & Shabbir Ahmed & George L. Nemhauser, 2009. "Cutting Planes for Multistage Stochastic Integer Programs," Operations Research, INFORMS, vol. 57(2), pages 287-298, April.
    15. Dentcheva, Darinka & Martinez, Gabriela, 2012. "Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse," European Journal of Operational Research, Elsevier, vol. 219(1), pages 1-8.
    16. Matthias Nowak & Werner Römisch, 2000. "Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty," Annals of Operations Research, Springer, vol. 100(1), pages 251-272, December.
    17. J. Benders, 2005. "Partitioning procedures for solving mixed-variables programming problems," Computational Management Science, Springer, vol. 2(1), pages 3-19, January.
    18. Gustavo Angulo & Shabbir Ahmed & Santanu S. Dey, 2016. "Improving the Integer L-Shaped Method," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 483-499, August.
    19. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    20. Brian C. Dean & Michel X. Goemans & Jan Vondrák, 2008. "Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 945-964, November.
    21. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    2. Escudero, Laureano F. & Garín, M. Araceli & Monge, Juan F. & Unzueta, Aitziber, 2020. "Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management," European Journal of Operational Research, Elsevier, vol. 285(3), pages 988-1001.
    3. Yin, Xuecheng & Büyüktahtakın, İ. Esra & Patel, Bhumi P., 2023. "COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk," European Journal of Operational Research, Elsevier, vol. 304(1), pages 255-275.
    4. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    5. Audrius Kabašinskas & Francesca Maggioni & Kristina Šutienė & Eimutis Valakevičius, 2019. "A multistage risk-averse stochastic programming model for personal savings accrual: the evidence from Lithuania," Annals of Operations Research, Springer, vol. 279(1), pages 43-70, August.
    6. Aldasoro, Unai & Escudero, Laureano F. & Merino, María & Pérez, Gloria, 2017. "A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0–1 problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 590-606.
    7. Baptista, Susana & Barbosa-Póvoa, Ana Paula & Escudero, Laureano F. & Gomes, Maria Isabel & Pizarro, Celeste, 2019. "On risk management of a two-stage stochastic mixed 0–1 model for the closed-loop supply chain design problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 91-107.
    8. Huang, Zhouchun & Zheng, Qipeng Phil, 2020. "A multistage stochastic programming approach for preventive maintenance scheduling of GENCOs with natural gas contract," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1036-1051.
    9. Eyyüb Y. Kıbış & İ. Esra Büyüktahtakın & Robert G. Haight & Najmaddin Akhundov & Kathleen Knight & Charles E. Flower, 2021. "A Multistage Stochastic Programming Approach to the Optimal Surveillance and Control of the Emerald Ash Borer in Cities," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 808-834, May.
    10. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    11. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    12. Francesca Maggioni & Elisabetta Allevi & Asgeir Tomasgard, 2020. "Bounds in multi-horizon stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 605-625, September.
    13. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
    14. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    15. Bushaj, Sabah & Büyüktahtakın, İ. Esra & Haight, Robert G., 2022. "Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1094-1110.
    16. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    17. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer & Mark S. Roberts, 2011. "Optimizing the Societal Benefits of the Annual Influenza Vaccine: A Stochastic Programming Approach," Operations Research, INFORMS, vol. 59(5), pages 1131-1143, October.
    18. Alonso-Ayuso, Antonio & Carvallo, Felipe & Escudero, Laureano F. & Guignard, Monique & Pi, Jiaxing & Puranmalka, Raghav & Weintraub, Andrés, 2014. "Medium range optimization of copper extraction planning under uncertainty in future copper prices," European Journal of Operational Research, Elsevier, vol. 233(3), pages 711-726.
    19. Schulze, Tim & Grothey, Andreas & McKinnon, Ken, 2017. "A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 247-259.
    20. Bomze, Immanuel M. & Gabl, Markus & Maggioni, Francesca & Pflug, Georg Ch., 2022. "Two-stage stochastic standard quadratic optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 21-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:309:y:2022:i:1:d:10.1007_s10479-021-04388-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.