IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i3p797-809.html
   My bibliography  Save this article

Bidding in sequential electricity markets: The Nordic case

Author

Listed:
  • Boomsma, Trine Krogh
  • Juul, Nina
  • Fleten, Stein-Erik

Abstract

For electricity market participants trading in sequential markets with differences in price levels and risk exposure, it is relevant to analyze the potential of coordinated bidding. We consider a Nordic power producer who engages in the day-ahead spot market and the hour-ahead balancing market. In both markets, clearing prices and dispatched volumes are unknown at the time of bidding. However, in the balancing market, the market participant faces an additional risk of not being dispatched. Taking into account the sequential clearing of these markets and the gradual realization of market prices, we formulate the bidding problem as a multi-stage stochastic program. We investigate whether higher risk exposure may cause hesitation to bid into the balancing market. Furthermore, we quantify the gain from coordinated bidding, and by deriving bounds on this gain, assess the performance of alternative bidding strategies used in practice.

Suggested Citation

  • Boomsma, Trine Krogh & Juul, Nina & Fleten, Stein-Erik, 2014. "Bidding in sequential electricity markets: The Nordic case," European Journal of Operational Research, Elsevier, vol. 238(3), pages 797-809.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:3:p:797-809
    DOI: 10.1016/j.ejor.2014.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714003695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Skytte, Klaus, 1999. "The regulating power market on the Nordic power exchange Nord Pool: an econometric analysis," Energy Economics, Elsevier, vol. 21(4), pages 295-308, August.
    2. G. Pritchard & G. Zakeri, 2003. "Market Offering Strategies for Hydroelectric Generators," Operations Research, INFORMS, vol. 51(4), pages 602-612, August.
    3. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    4. E. J. Anderson & A. B. Philpott, 2002. "Optimal Offer Construction in Electricity Markets," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 82-100, February.
    5. Eduardo Faria & Stein-Erik Fleten, 2011. "Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account," Computational Management Science, Springer, vol. 8(1), pages 75-101, April.
    6. Haldrup Niels & Nielsen Morten Ø., 2006. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
    7. Philip J. Neame & Andrew B. Philpott & Geoffrey Pritchard, 2003. "Offer Stack Optimization in Electricity Pool Markets," Operations Research, INFORMS, vol. 51(3), pages 397-408, June.
    8. Gro Klaeboe & Anders Lund Eriksrud & Stein-Erik Fleten, 2013. "Benchmarking time series based forecasting models for electricity balancing market prices," Working Papers 2013-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    9. Fleten, Stein-Erik & Kristoffersen, Trine Krogh, 2007. "Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer," European Journal of Operational Research, Elsevier, vol. 181(2), pages 916-928, September.
    10. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    11. Stein W. Wallace & Stein-Erik Fleten, 2002. "Stochastic programming in energy," GE, Growth, Math methods 0201001, University Library of Munich, Germany, revised 13 Nov 2003.
    12. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleten, Stein-Erik & Haugstvedt, Daniel & Steinsbø, Jens Arne & Belsnes, Michael & Fleischmann, Franziska, 2011. "Bidding hydropower generation: Integrating short- and long-term scheduling," MPRA Paper 44450, University Library of Munich, Germany.
    2. Eduardo Faria & Stein-Erik Fleten, 2011. "Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account," Computational Management Science, Springer, vol. 8(1), pages 75-101, April.
    3. Fleten, Stein-Erik & Kristoffersen, Trine Krogh, 2007. "Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer," European Journal of Operational Research, Elsevier, vol. 181(2), pages 916-928, September.
    4. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
    5. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    6. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    7. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    8. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    9. Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
    10. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    11. Robinson Kruse & Christoph Wegener, 2019. "Explosive behaviour and long memory with an application to European bond yield spreads," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 139-153, February.
    12. Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
    13. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    14. João Pedro Pereira & Vasco Pesquita & Paulo M. M. Rodrigues & António Rua, 2019. "Market integration and the persistence of electricity prices," Empirical Economics, Springer, vol. 57(5), pages 1495-1514, November.
    15. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    16. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    17. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    18. Gilles de Truchis & Elena Ivona Dumitrescu & Florent Dubois, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," EconomiX Working Papers 2019-15, University of Paris Nanterre, EconomiX.
    19. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    20. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:3:p:797-809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.