IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i1p268-285.html
   My bibliography  Save this article

On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach

Author

Listed:
  • Castro, Jordi
  • Escudero, Laureano F.
  • Monge, Juan F.

Abstract

A novel approach based on a specialized interior-point method (IPM) is presented for solving large-scale stochastic multistage continuous optimization problems, which represent the uncertainty in strategic multistage and operational two-stage scenario trees. This new solution approach considers a split-variable formulation of the strategic and operational structures. The specialized IPM solves the normal equations by combining Cholesky factorizations with preconditioned conjugate gradients, doing so for, respectively, the constraints of the stochastic formulation and those that equate the split-variables. We show that, for multistage stochastic problems, the preconditioner (i) is a block-diagonal matrix composed of as many shifted tridiagonal matrices as the number of nested strategic-operational two-stage trees, thus allowing the efficient solution of systems of equations; (ii) its complexity in a multistage stochastic problem is equivalent to that of a very large-scale two-stage problem. A broad computational experience is reported for large multistage stochastic supply network design (SND) and revenue management (RM) problems. Some of the most difficult instances of SND had 5 stages, 839 million linear variables, 13 million quadratic variables, 21 million constraints, and 3750 scenario tree nodes; while those of RM had 8 stages, 278 million linear variables, 100 million constraints, and 100,000 scenario tree nodes. For those problems, the proposed approach obtained the solution in 1.1 days using 174 gigabytes of memory for SND, and in 1.7 days using 83 gigabytes for RM; while CPLEX v20.1 required more than 53 days and 531 gigabytes for SND, and more than 19 days and 410 gigabytes for RM.

Suggested Citation

  • Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:1:p:268-285
    DOI: 10.1016/j.ejor.2023.03.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723002680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.03.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2017. "A Distributed Interior-Point KKT Solver for Multistage Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 612-630, November.
    3. Laureano F. Escudero & Juan F. Monge, 2021. "On Multistage Multiscale Stochastic Capacitated Multiple Allocation Hub Network Expansion Planning," Mathematics, MDPI, vol. 9(24), pages 1-39, December.
    4. Gondzio, Jacek & Grothey, Andreas, 2007. "Solving non-linear portfolio optimization problems with the primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1019-1029, September.
    5. Laureano F. Escudero & Juan F. Monge, 2018. "On capacity expansion planning under strategic and operational uncertainties based on stochastic dominance risk averse management," Computational Management Science, Springer, vol. 15(3), pages 479-500, October.
    6. Martin Glanzer & Georg Ch. Pflug, 2020. "Multiscale stochastic optimization: modeling aspects and scenario generation," Computational Optimization and Applications, Springer, vol. 75(1), pages 1-34, January.
    7. Bocanegra, Silvana & Castro, Jordi & Oliveira, Aurelio R.L., 2013. "Improving an interior-point approach for large block-angular problems by hybrid preconditioners," European Journal of Operational Research, Elsevier, vol. 231(2), pages 263-273.
    8. Michal Kaut & Kjetil Midthun & Adrian Werner & Asgeir Tomasgard & Lars Hellemo & Marte Fodstad, 2014. "Multi-horizon stochastic programming," Computational Management Science, Springer, vol. 11(1), pages 179-193, January.
    9. L. F. Escudero & J. F. Monge & D. Romero Morales & J. Wang, 2013. "Expected Future Value Decomposition Based Bid Price Generation for Large-Scale Network Revenue Management," Transportation Science, INFORMS, vol. 47(2), pages 181-197, May.
    10. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    11. Francesca Maggioni & Elisabetta Allevi & Asgeir Tomasgard, 2020. "Bounds in multi-horizon stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 605-625, September.
    12. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    13. Irvin J. Lustig & John M. Mulvey & Tamra J. Carpenter, 1991. "Formulating Two-Stage Stochastic Programs for Interior Point Methods," Operations Research, INFORMS, vol. 39(5), pages 757-770, October.
    14. Blomvall, Jorgen & Lindberg, Per Olov, 2002. "A Riccati-based primal interior point solver for multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 143(2), pages 452-461, December.
    15. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    16. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    2. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    4. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    5. Diana Barro & Elio Canestrelli, 2016. "Combining stochastic programming and optimal control to decompose multistage stochastic optimization problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 711-742, July.
    6. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    7. Unai Aldasoro & Laureano Escudero & María Merino & Juan Monge & Gloria Pérez, 2015. "On parallelization of a stochastic dynamic programming algorithm for solving large-scale mixed 0–1 problems under uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 703-742, October.
    8. Hongyu Zhang & Ignacio E. Grossmann & Asgeir Tomasgard, 2024. "Decomposition methods for multi-horizon stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-24, June.
    9. Laureano F. Escudero & Juan F. Monge, 2021. "On Multistage Multiscale Stochastic Capacitated Multiple Allocation Hub Network Expansion Planning," Mathematics, MDPI, vol. 9(24), pages 1-39, December.
    10. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    11. Gyana R. Parija & Shabbir Ahmed & Alan J. King, 2004. "On Bridging the Gap Between Stochastic Integer Programming and MIP Solver Technologies," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 73-83, February.
    12. Diana Barro & Elio Canestrelli, 2011. "Combining stochastic programming and optimal control to solve multistage stochastic optimization problems," Working Papers 2011_24, Department of Economics, University of Venice "Ca' Foscari", revised 2011.
    13. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    14. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    15. Lijian Chen & Tito Homem-de-Mello, 2010. "Re-solving stochastic programming models for airline revenue management," Annals of Operations Research, Springer, vol. 177(1), pages 91-114, June.
    16. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    17. Sanjay Mehrotra & M. Gokhan Ozevin, 2009. "Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse," Operations Research, INFORMS, vol. 57(4), pages 964-974, August.
    18. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    19. Li, Y.P. & Huang, G.H. & Yang, Z.F. & Nie, S.L., 2008. "IFMP: Interval-fuzzy multistage programming for water resources management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 52(5), pages 800-812.
    20. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:1:p:268-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.