IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics096007792030415x.html
   My bibliography  Save this article

Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India

Author

Listed:
  • Arora, Parul
  • Kumar, Himanshu
  • Panigrahi, Bijaya Ketan

Abstract

In this paper, Deep Learning-based models are used for predicting the number of novel coronavirus (COVID-19) positive reported cases for 32 states and union territories of India. Recurrent neural network (RNN) based long-short term memory (LSTM) variants such as Deep LSTM, Convolutional LSTM and Bi-directional LSTM are applied on Indian dataset to predict the number of positive cases. LSTM model with minimum error is chosen for predicting daily and weekly cases. It is observed that the proposed method yields high accuracy for short term prediction with error less than 3% for daily predictions and less than 8% for weekly predictions. Indian states are categorised into different zones based on the spread of positive cases and daily growth rate for easy identification of novel coronavirus hot-spots. Preventive measures to reduce the spread in respective zones are also suggested. A website is created where the state-wise predictions are updated using the proposed model for authorities,researchers and planners. This study can be applied by other countries for predicting COVID-19 cases at the state or national level.

Suggested Citation

  • Arora, Parul & Kumar, Himanshu & Panigrahi, Bijaya Ketan, 2020. "Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030415x
    DOI: 10.1016/j.chaos.2020.110017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030415X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
    2. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
    4. Shastri, Sourabh & Singh, Kuljeet & Kumar, Sachin & Kour, Paramjit & Mansotra, Vibhakar, 2020. "Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    7. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    8. Mohammad Reza Davahli & Waldemar Karwowski & Krzysztof Fiok, 2021. "Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-14, July.
    9. Bagarello, F. & Gargano, F. & Roccati, F., 2020. "Modeling epidemics through ladder operators," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
    11. Ali, Furqan & Ullah, Farman & Khan, Junaid Iqbal & Khan, Jebran & Sardar, Abdul Wasay & Lee, Sungchang, 2023. "COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Yong-Ju Jang & Min-Seung Kim & Chan-Ho Lee & Ji-Hye Choi & Jeong-Hee Lee & Sun-Hong Lee & Tae-Eung Sung, 2022. "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-22, June.
    14. Liu, Jiangchuan & Ma, Qixin & Zhang, Quanchang, 2024. "A metaheuristic algorithm for model predictive control of the oil-cooled motor in hybrid electric vehicles," Energy, Elsevier, vol. 295(C).
    15. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    2. Jose M. Martin-Moreno & Antoni Alegre-Martinez & Victor Martin-Gorgojo & Jose Luis Alfonso-Sanchez & Ferran Torres & Vicente Pallares-Carratala, 2022. "Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    3. Middya, Asif Iqbal & Roy, Sarbani, 2022. "Spatio-temporal variation of Covid-19 health outcomes in India using deep learning based models," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    4. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Singh, Vaishnavi, 2020. "Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    9. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    10. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    11. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    15. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    16. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    18. Kun Zhang & Xing Huo & Kun Shao, 2023. "Temperature Time Series Prediction Model Based on Time Series Decomposition and Bi-LSTM Network," Mathematics, MDPI, vol. 11(9), pages 1-16, April.
    19. Shalini Shekhawat & Akash Saxena & Ramadan A. Zeineldin & Ali Wagdy Mohamed, 2023. "Prediction of Infectious Disease to Reduce the Computation Stress on Medical and Health Care Facilitators," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    20. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030415x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.