COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2022.112984
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Prasanth, Sikakollu & Singh, Uttam & Kumar, Arun & Tikkiwal, Vinay Anand & Chong, Peter H.J., 2021. "Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Mustafa Abdul Salam & Sanaa Taha & Mohamed Ramadan, 2021. "COVID-19 detection using federated machine learning," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-25, June.
- Arora, Parul & Kumar, Himanshu & Panigrahi, Bijaya Ketan, 2020. "Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Shastri, Sourabh & Singh, Kuljeet & Kumar, Sachin & Kour, Paramjit & Mansotra, Vibhakar, 2020. "Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
- Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
- Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
- Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Yong-Ju Jang & Min-Seung Kim & Chan-Ho Lee & Ji-Hye Choi & Jeong-Hee Lee & Sun-Hong Lee & Tae-Eung Sung, 2022. "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-22, June.
- Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
- Rohitash Chandra & Ayush Jain & Divyanshu Singh Chauhan, 2022. "Deep learning via LSTM models for COVID-19 infection forecasting in India," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-28, January.
- Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Middya, Asif Iqbal & Roy, Sarbani, 2022. "Spatio-temporal variation of Covid-19 health outcomes in India using deep learning based models," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Xue, Dong & Wang, Ming & Liu, Fangzhou & Buss, Martin, 2024. "Time series modeling and forecasting of epidemic spreading processes using deep transfer learning," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
- Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Emerson Vilar de Oliveira & Dunfrey Pires Aragão & Luiz Marcos Garcia Gonçalves, 2024. "A New Auto-Regressive Multi-Variable Modified Auto-Encoder for Multivariate Time-Series Prediction: A Case Study with Application to COVID-19 Pandemics," IJERPH, MDPI, vol. 21(4), pages 1-19, April.
- Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
- Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
- Lorenzo Menculini & Andrea Marini & Massimiliano Proietti & Alberto Garinei & Alessio Bozza & Cecilia Moretti & Marcello Marconi, 2021. "Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices," Forecasting, MDPI, vol. 3(3), pages 1-19, September.
- Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
More about this item
Keywords
COVID-19; Forecasting; Deep Learning; Stacked Bi-LSTM; Long short-term memory; Pandemic; Time series;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922011638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.