IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305890.html
   My bibliography  Save this article

Modeling epidemics through ladder operators

Author

Listed:
  • Bagarello, F.
  • Gargano, F.
  • Roccati, F.

Abstract

We propose a simple model of spreading of some infection in an originally healthy population which is different from other models existing in the literature. In particular, we use an operator technique which allows us to describe in a natural way the possible interactions between healthy and un-healthy populations, and their transformation into recovered and to dead people. After a rather general discussion, we apply our method to the analysis of Chinese data for the SARS-2003 (Severe acute respiratory syndrome; SARS-CoV-1) and the Coronavirus COVID-19 (Corona Virus Disease; SARS-CoV-2) and we show that the model works very well in reproducing the long-time behaviour of the disease, and in particular in finding the number of affected and dead people in the limit of large time. Moreover, we show how the model can be easily modified to consider some lockdown measure, and we deduce that this procedure drastically reduces the asymptotic value of infected individuals, as expected, and observed in real life.

Suggested Citation

  • Bagarello, F. & Gargano, F. & Roccati, F., 2020. "Modeling epidemics through ladder operators," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305890
    DOI: 10.1016/j.chaos.2020.110193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arora, Parul & Kumar, Himanshu & Panigrahi, Bijaya Ketan, 2020. "Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Bagarello, F., 2020. "One-directional quantum mechanical dynamics and an application to decision making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Steffen Unkel & C. Paddy Farrington & Paul H. Garthwaite & Chris Robertson & Nick Andrews, 2012. "Statistical methods for the prospective detection of infectious disease outbreaks: a review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 49-82, January.
    4. Bagarello,Fabio, 2019. "Quantum Concepts in the Social, Ecological and Biological Sciences," Cambridge Books, Cambridge University Press, number 9781108492126, October.
    5. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Nastasi & Carla Perrone & Salvatore Taffara & Giorgia Vitanza, 2022. "A Time-Delayed Deterministic Model for the Spread of COVID-19 with Calibration on a Real Dataset," Mathematics, MDPI, vol. 10(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christin Schröder & Luis Alberto Peña Diaz & Anna Maria Rohde & Brar Piening & Seven Johannes Sam Aghdassi & Georg Pilarski & Norbert Thoma & Petra Gastmeier & Rasmus Leistner & Michael Behnke, 2020. "Lean back and wait for the alarm? Testing an automated alarm system for nosocomial outbreaks to provide support for infection control professionals," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    2. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    3. Zhang, Ping & Wang, Jianwen & Atkinson, Peter M., 2019. "Identifying the spatio-temporal risk variability of avian influenza A H7N9 in China," Ecological Modelling, Elsevier, vol. 414(C).
    4. Fabio Bagarello & Biagio Bossone, 2023. "Bank Deposits as {\em Money Quanta}," Papers 2311.01542, arXiv.org.
    5. Di Salvo, Rosa & Gorgone, Matteo & Oliveri, Francesco, 2020. "Generalized Hamiltonian for a two-mode fermionic model and asymptotic equilibria," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    7. Douc, Randal & Olsson, Jimmy & Roueff, François, 2020. "Posterior consistency for partially observed Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 733-759.
    8. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Jonathan U Harrison & Ruth E Baker, 2018. "The impact of temporal sampling resolution on parameter inference for biological transport models," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-30, June.
    10. Chengcheng Bei & Shiping Liu & Yin Liao & Gaoliang Tian & Zichen Tian, 2021. "Predicting new cases of COVID‐19 and the application to population sustainability analysis," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4859-4884, September.
    11. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Santitissadeekorn, Naratip & Lloyd, David J.B. & Short, Martin B. & Delahaies, Sylvain, 2020. "Approximate filtering of conditional intensity process for Poisson count data: Application to urban crime," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    13. Yeong-Jun Song & Hae-Kwan Cheong & Myung Ki & Ji-Yeon Shin & Seung-sik Hwang & Mira Park & Moran Ki & Jiseun Lim, 2018. "The Epidemiological Influence of Climatic Factors on Shigellosis Incidence Rates in Korea," IJERPH, MDPI, vol. 15(10), pages 1-9, October.
    14. Mohammad Reza Davahli & Waldemar Karwowski & Krzysztof Fiok, 2021. "Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-14, July.
    15. King, Aaron A. & Lin, Qianying & Ionides, Edward L., 2022. "Markov genealogy processes," Theoretical Population Biology, Elsevier, vol. 143(C), pages 77-91.
    16. Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
    17. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
    18. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    19. Maeno, Yoshiharu, 2016. "Detecting a trend change in cross-border epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 73-81.
    20. Lili Zhuang & Noel Cressie, 2014. "Bayesian hierarchical statistical SIRS models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 601-646, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.