IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924006441.html
   My bibliography  Save this article

Time series modeling and forecasting of epidemic spreading processes using deep transfer learning

Author

Listed:
  • Xue, Dong
  • Wang, Ming
  • Liu, Fangzhou
  • Buss, Martin

Abstract

Traditional data-driven methods for modeling and predicting epidemic spreading typically operate in an independent and identically distributed setting. However, epidemic spreading on complex networks exhibits significant heterogeneity across different phases, regions, and viruses, indicating that epidemic time series may not be independent and identically distributed due to temporal and spatial variations. In this article, a novel deep transfer learning method integrating convolutional neural networks (CNNs) and bi-directional long short-term memory (BiLSTM) networks is proposed to model and forecast epidemics with heterogeneous data. The proposed method combines a CNN-based layer for local feature extraction, a BiLSTM-based layer for temporal analysis, and a fully connected layer for prediction, and employs transfer learning to enhance the generalization ability of the CNN-BiLSTM model. To improve prediction performance, hyperparameter tuning is conducted using particle swarm optimization during model training. Finally, we adopt the proposed approach to characterize the spatio-temporal spreading dynamics of COVID-19 and infer the pathological heterogeneity among epidemics of severe acute respiratory syndrome (SARS), influenza A (H1N1), and COVID-19. The comprehensive results demonstrate the effectiveness of the proposed approach in exploring the spatiotemporal variations in the spread of epidemics and characterizing the epidemiological features of different viruses. Moreover, the proposed method can significantly reduce modeling and predicting errors in epidemic spread to some extent.

Suggested Citation

  • Xue, Dong & Wang, Ming & Liu, Fangzhou & Buss, Martin, 2024. "Time series modeling and forecasting of epidemic spreading processes using deep transfer learning," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006441
    DOI: 10.1016/j.chaos.2024.115092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arora, Parul & Kumar, Himanshu & Panigrahi, Bijaya Ketan, 2020. "Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Alakus, Talha Burak & Turkoglu, Ibrahim, 2020. "Comparison of deep learning approaches to predict COVID-19 infection," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Xingjie Hao & Shanshan Cheng & Degang Wu & Tangchun Wu & Xihong Lin & Chaolong Wang, 2020. "Reconstruction of the full transmission dynamics of COVID-19 in Wuhan," Nature, Nature, vol. 584(7821), pages 420-424, August.
    5. Chen, Kexin & Pun, Chi Seng & Wong, Hoi Ying, 2023. "Efficient social distancing during the COVID-19 pandemic: Integrating economic and public health considerations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 84-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    2. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    3. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Ali, Furqan & Ullah, Farman & Khan, Junaid Iqbal & Khan, Jebran & Sardar, Abdul Wasay & Lee, Sungchang, 2023. "COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
    7. Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
    8. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    10. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    11. Boeing, Philipp & Wang, Yihan, 2021. "Decoding China's Covid-19 "virus exceptionalism": Community-based digital contact tracing in Wuhan," ZEW Discussion Papers 21-028, ZEW - Leibniz Centre for European Economic Research.
    12. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    13. Lifeng Zhang & Roy E. Welsch & Zhi Cao, 2022. "The Transmission, Infection Prevention, and Control during the COVID-19 Pandemic in China: A Retrospective Study," IJERPH, MDPI, vol. 19(5), pages 1-15, March.
    14. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    15. Kun Zhang & Xing Huo & Kun Shao, 2023. "Temperature Time Series Prediction Model Based on Time Series Decomposition and Bi-LSTM Network," Mathematics, MDPI, vol. 11(9), pages 1-16, April.
    16. Keqiang Dong & Liao Guo, 2021. "Research on the Spatial Correlation and Spatial Lag of COVID-19 Infection Based on Spatial Analysis," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    17. Shalini Shekhawat & Akash Saxena & Ramadan A. Zeineldin & Ali Wagdy Mohamed, 2023. "Prediction of Infectious Disease to Reduce the Computation Stress on Medical and Health Care Facilitators," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    18. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    19. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.