IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6763-d829708.html
   My bibliography  Save this article

A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic

Author

Listed:
  • Yong-Ju Jang

    (Department of Computer Science, Graduate School, Yonsei University, Wonju 26493, Korea)

  • Min-Seung Kim

    (Department of Computer Science, Graduate School, Yonsei University, Wonju 26493, Korea)

  • Chan-Ho Lee

    (Department of Computer Science, Graduate School, Yonsei University, Wonju 26493, Korea)

  • Ji-Hye Choi

    (Department of Computer Science, Graduate School, Yonsei University, Wonju 26493, Korea)

  • Jeong-Hee Lee

    (Department of Computer Science, Graduate School, Yonsei University, Wonju 26493, Korea)

  • Sun-Hong Lee

    (Department of Computer Science, Graduate School, Yonsei University, Wonju 26493, Korea)

  • Tae-Eung Sung

    (Division of Software, Yonsei University, Wonju 26493, Korea)

Abstract

Following the outbreak of the COVID-19 pandemic, the continued emergence of major variant viruses has caused enormous damage worldwide by generating social and economic ripple effects, and the importance of PHSMs (Public Health and Social Measures) is being highlighted to cope with this severe situation. Accordingly, there has also been an increase in research related to a decision support system based on simulation approaches used as a basis for PHSMs. However, previous studies showed limitations impeding utilization as a decision support system for policy establishment and implementation, such as the failure to reflect changes in the effectiveness of PHSMs and the restriction to short-term forecasts. Therefore, this study proposes an LSTM-Autoencoder-based decision support system for establishing and implementing PHSMs. To overcome the limitations of existing studies, the proposed decision support system used a methodology for predicting the number of daily confirmed cases over multiple periods based on multiple output strategies and a methodology for rapidly identifying varies in policy effects based on anomaly detection. It was confirmed that the proposed decision support system demonstrated excellent performance compared to models used for time series analysis such as statistical models and deep learning models. In addition, we endeavored to increase the usability of the proposed decision support system by suggesting a transfer learning-based methodology that can efficiently reflect variations in policy effects. Finally, the decision support system proposed in this study provides a methodology that provides multi-period forecasts, identifying variations in policy effects, and efficiently reflects the effects of variation policies. It was intended to provide reasonable and realistic information for the establishment and implementation of PHSMs and, through this, to yield information expected to be highly useful, which had not been provided in the decision support systems presented in previous studies.

Suggested Citation

  • Yong-Ju Jang & Min-Seung Kim & Chan-Ho Lee & Ji-Hye Choi & Jeong-Hee Lee & Sun-Hong Lee & Tae-Eung Sung, 2022. "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-22, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6763-:d:829708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Hale & Noam Angrist & Rafael Goldszmidt & Beatriz Kira & Anna Petherick & Toby Phillips & Samuel Webster & Emily Cameron-Blake & Laura Hallas & Saptarshi Majumdar & Helen Tatlow, 2021. "A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)," Nature Human Behaviour, Nature, vol. 5(4), pages 529-538, April.
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Roberto Vega & Leonardo Flores & Russell Greiner, 2022. "SIMLR: Machine Learning inside the SIR Model for COVID-19 Forecasting," Forecasting, MDPI, vol. 4(1), pages 1-23, January.
    4. Arora, Parul & Kumar, Himanshu & Panigrahi, Bijaya Ketan, 2020. "Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    7. Basnarkov, Lasko, 2021. "SEAIR Epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
    2. Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
    3. Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    4. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Farrukh Saleem & Abdullah Saad AL-Malaise AL-Ghamdi & Madini O. Alassafi & Saad Abdulla AlGhamdi, 2022. "Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review," IJERPH, MDPI, vol. 19(9), pages 1-18, April.
    6. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Schaum, A. & Bernal-Jaquez, R. & Alarcon Ramos, L., 2022. "Data-assimilation and state estimation for contact-based spreading processes using the ensemble kalman filter: Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Ali, Furqan & Ullah, Farman & Khan, Junaid Iqbal & Khan, Jebran & Sardar, Abdul Wasay & Lee, Sungchang, 2023. "COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Judit Temesvary & Andrew Wei, 2021. "Domestic Lending and the Pandemic: How Does Banks' Exposure to Covid-19 Abroad Affect Their Lending in the United States?," Finance and Economics Discussion Series 2021-056r1, Board of Governors of the Federal Reserve System (U.S.), revised 17 Nov 2021.
    10. Jacqueline Ruth & Steffen Willwacher & Oliver Korn, 2022. "Acceptance of Digital Sports: A Study Showing the Rising Acceptance of Digital Health Activities Due to the SARS-CoV-19 Pandemic," IJERPH, MDPI, vol. 19(1), pages 1-16, January.
    11. Hannah Carver & Tracey Price & Danilo Falzon & Peter McCulloch & Tessa Parkes, 2022. "Stress and Wellbeing during the COVID-19 Pandemic: A Mixed-Methods Exploration of Frontline Homelessness Services Staff Experiences in Scotland," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    12. Phurichai Rungcharoenkitkul, 2021. "Macroeconomic effects of COVID‐19: A mid‐term review," Pacific Economic Review, Wiley Blackwell, vol. 26(4), pages 439-458, October.
    13. Carlos Díaz & Sebastian Fossati & Nicolás Trajtenberg, 2022. "Stay at home if you can: COVID‐19 stay‐at‐home guidelines and local crime," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 19(4), pages 1067-1113, December.
    14. Joël Cariolle & Florian Léon, 2022. "How internet helped firms to cope with COVID-19," Working Papers hal-03592617, HAL.
    15. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    16. Alejandro G. Graziano & Yuan Tian, 2023. "Trade disruptions along the global supply chain," Discussion Papers 2023-06, University of Nottingham, GEP.
    17. Khan, Nawab Ali & Azhar, Mohd & Rahman, Mohd Nayyer & Akhtar, Mohd Junaid, 2022. "Scale development and validation for usage of social networking sites during COVID-19," Technology in Society, Elsevier, vol. 70(C).
    18. Yekaterina Chzhen & Jennifer Symonds & Dympna Devine & Júlia Mikolai & Susan Harkness & Seaneen Sloan & Gabriela Martinez Sainz, 2022. "Learning in a Pandemic: Primary School children’s Emotional Engagement with Remote Schooling during the spring 2020 Covid-19 Lockdown in Ireland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 15(4), pages 1517-1538, August.
    19. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    20. Mirko Licchetta & Giovanni Mattozzi & Rafal Raciborski & Rupert Willis, 2022. "Economic Adjustment in the Euro Area and the United States during the COVID-19 Crisis," European Economy - Discussion Papers 160, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6763-:d:829708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.