IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v135y2020ics0960077920302642.html
   My bibliography  Save this article

Time series forecasting of COVID-19 transmission in Canada using LSTM networks

Author

Listed:
  • Chimmula, Vinay Kumar Reddy
  • Zhang, Lei

Abstract

On March 11th 2020, World Health Organization (WHO) declared the 2019 novel corona virus as global pandemic. Corona virus, also known as COVID-19 was first originated in Wuhan, Hubei province in China around December 2019 and spread out all over the world within few weeks. Based on the public datasets provided by John Hopkins university and Canadian health authority, we have developed a forecasting model of COVID-19 outbreak in Canada using state-of-the-art Deep Learning (DL) models. In this novel research, we evaluated the key features to predict the trends and possible stopping time of the current COVID-19 outbreak in Canada and around the world. In this paper we presented the Long short-term memory (LSTM) networks, a deep learning approach to forecast the future COVID-19 cases. Based on the results of our Long short-term memory (LSTM) network, we predicted the possible ending point of this outbreak will be around June 2020. In addition to that, we compared transmission rates of Canada with Italy and USA. Here we also presented the 2, 4, 6, 8, 10, 12 and 14th day predictions for 2 successive days. Our forecasts in this paper is based on the available data until March 31, 2020. To the best of our knowledge, this of the few studies to use LSTM networks to forecast the infectious diseases.

Suggested Citation

  • Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302642
    DOI: 10.1016/j.chaos.2020.109864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
    2. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of a Modified Dickey-Fuller Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 57(3), pages 411-419, August.
    3. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Jajarmi, Amin & Arshad, Sadia & Baleanu, Dumitru, 2019. "A new fractional modelling and control strategy for the outbreak of dengue fever," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. J. C. de Jong & E. C. J. Claas & A. D. M. E. Osterhaus & R. G. Webster & W. L. Lim, 1997. "A pandemic warning?," Nature, Nature, vol. 389(6651), pages 554-554, October.
    6. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark J Holmes & Jesús Otero & Theodore Panagiotidis, 2018. "Climbing the property ladder: An analysis of market integration in London property prices," Urban Studies, Urban Studies Journal Limited, vol. 55(12), pages 2660-2681, September.
    2. Keen Meng Choy & Hwee Kwan Chow, 2004. "Forecasting the Global Electronics Cycle with Leading Indicators: A VAR Approach," Econometric Society 2004 Australasian Meetings 223, Econometric Society.
    3. Domingo Rodríguez Benavides & Abigail Rodríguez Nava, 2019. "Convergencia de los precios locales en México: un enfoque de pruebas entre pares/Convergence of local prices in Mexico: A pairwise approach," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 34(2), pages 309-332.
    4. Pawel Milobedzki, 2010. "The Term Structure of the Polish Interbank Rates. A Note on the Symmetry of their Reversion to the Mean," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 10, pages 81-95.
    5. Burret Heiko T. & Köhler Ekkehard A. & Feld Lars P., 2013. "Sustainability of Public Debt in Germany – Historical Considerations and Time Series Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(3), pages 291-335, June.
    6. Yin‐Wong Cheung & XingWang Qian, 2010. "Capital Flight: China's Experience," Review of Development Economics, Wiley Blackwell, vol. 14(2), pages 227-247, May.
    7. Cheung, Yin-Wong & Chinn, Menzie D. & Qian, XingWang, 2014. "The structural behavior of China–US trade flows," BOFIT Discussion Papers 23/2014, Bank of Finland Institute for Emerging Economies (BOFIT).
    8. Peter Sephton, 2008. "Critical values of the augmented fractional Dickey–Fuller test," Empirical Economics, Springer, vol. 35(3), pages 437-450, November.
    9. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Holmes, Mark J. & Otero, Jesús & Panagiotidis, Theodore, 2013. "On the dynamics of gasoline market integration in the United States: Evidence from a pair-wise approach," Energy Economics, Elsevier, vol. 36(C), pages 503-510.
    11. Baumöhl, Eduard, 2013. "Stock market integration between the CEE-4 and the G7 markets: Asymmetric DCC and smooth transition approach," MPRA Paper 43834, University Library of Munich, Germany.
    12. Cheung, Yin-Wong & Chinn, Menzie D. & Fujii, Eiji, 2003. "China, Hong Kong, and Taiwan: A quantitative assessment of real and financial integration," China Economic Review, Elsevier, vol. 14(3), pages 281-303.
    13. Madaleno, Mara & Dogan, Eyup & Taskin, Dilvin, 2022. "A step forward on sustainability: The nexus of environmental responsibility, green technology, clean energy and green finance," Energy Economics, Elsevier, vol. 109(C).
    14. Cheung, Yin-Wong & Lai, Kon S., 2000. "On cross-country differences in the persistence of real exchange rates," Journal of International Economics, Elsevier, vol. 50(2), pages 375-397, April.
    15. Luisanna Onnis & Patrizio Tirelli, 2015. "Shadow economy: Does it matter for money velocity?," Empirical Economics, Springer, vol. 49(3), pages 839-858, November.
    16. Siklos, Pierre L, 2000. "Inflation Targets and the Yield Curve: New Zealand and Australia versus the US," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 5(1), pages 15-32, February.
    17. Jean-Philippe Gervais, 2011. "Disentangling nonlinearities in the long- and short-run price relationships: an application to the US hog/pork supply chain," Applied Economics, Taylor & Francis Journals, vol. 43(12), pages 1497-1510.
    18. Henryk Dzwigol & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "The Role of Environmental Regulations, Renewable Energy, and Energy Efficiency in Finding the Path to Green Economic Growth," Energies, MDPI, vol. 16(7), pages 1-18, March.
    19. Haluk Erlat, 2004. "Unit roots or nonlinear stationarity in Turkish real exchange rates," Applied Economics Letters, Taylor & Francis Journals, vol. 11(10), pages 645-650.
    20. Naoufel Mahfoudh & Imen Gmach, 2021. "The Effects of Fiscal Effort in Tunisia: An Evidence from the ARDL Bound Testing Approach," Economies, MDPI, vol. 9(4), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.