Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Arora, Parul & Kumar, Himanshu & Panigrahi, Bijaya Ketan, 2020. "Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Samui, Piu & Mondal, Jayanta & Khajanchi, Subhas, 2020. "A mathematical model for COVID-19 transmission dynamics with a case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Zeroual, Abdelhafid & Harrou, Fouzi & Dairi, Abdelkader & Sun, Ying, 2020. "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Shastri, Sourabh & Singh, Kuljeet & Kumar, Sachin & Kour, Paramjit & Mansotra, Vibhakar, 2020. "Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
- Yu, Wennian & Kim, II Yong & Mechefske, Chris, 2020. "An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
- Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
- Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Ali, Furqan & Ullah, Farman & Khan, Junaid Iqbal & Khan, Jebran & Sardar, Abdul Wasay & Lee, Sungchang, 2023. "COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Yong-Ju Jang & Min-Seung Kim & Chan-Ho Lee & Ji-Hye Choi & Jeong-Hee Lee & Sun-Hong Lee & Tae-Eung Sung, 2022. "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-22, June.
- Schaum, A. & Bernal-Jaquez, R. & Alarcon Ramos, L., 2022. "Data-assimilation and state estimation for contact-based spreading processes using the ensemble kalman filter: Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
- Middya, Asif Iqbal & Roy, Sarbani, 2022. "Spatio-temporal variation of Covid-19 health outcomes in India using deep learning based models," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
- Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Bowen Long & Fangya Tan & Mark Newman, 2023. "Forecasting the Monkeypox Outbreak Using ARIMA, Prophet, NeuralProphet, and LSTM Models in the United States," Forecasting, MDPI, vol. 5(1), pages 1-11, January.
- Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
- Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022.
"Short-term Covid-19 forecast for latecomers,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
- Marcelo Medeiros & Alexandre Street & Davi Vallad~ao & Gabriel Vasconcelos & Eduardo Zilberman, 2020. "Short-Term Covid-19 Forecast for Latecomers," Papers 2004.07977, arXiv.org, revised Sep 2021.
- Khan, Junaid Iqbal & Ullah, Farman & Lee, Sungchang, 2022. "Attention based parameter estimation and states forecasting of COVID-19 pandemic using modified SIQRD Model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
- Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
More about this item
Keywords
machine learning; deep learning; data analytics; LSTM; epidemic disease outbreak; COVID-19;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:11:p:5943-:d:1154717. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.