IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp220-235.html
   My bibliography  Save this article

Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)

Author

Listed:
  • Venkatesh, G.
  • Elmi, Rashid Abdi

Abstract

This paper outlines a methodology for a systematic economic–environmental analysis of realistic and realisable options for recovering and utilising energy from biogas produced in sewage sludge digesters in WWTPs (wastewater treatment plants). Heat, electricity and transport fuel can be produced from biogas, consumed in-plant or even sold to external end-users. The paper initially considers global warming as the environmental impact of concern, but later also stresses on the necessity of avoiding problem shifting by factoring in other environmental impact categories as well. The methodology is subsequently applied to the Bekkelaget WWTP in Oslo (Norway). Five different options for handling biogas are considered, in addition to the status quo – the business-as-usual in year-2012, and a baseline case, where it is assumed that all biogas generated is flared completely and not utilised for energy recovery of any kind. Seven different cost scenarios – for electricity, natural gas, wood pellets, bio-methane and diesel – are constructed. This gives a total of 49 combinations, for each of which the net costs and net environmental impacts (global warming, eutrophication and acidification) are determined for the 10-year period 2012–2021. The changes (in percentages) with respect to the corresponding values for the baseline case, are recorded; suitable weighting factors are considered after interaction with experts and personnel associated with the plant, and the options are evaluated using this double-bottom-line approach (economic and environmental).

Suggested Citation

  • Venkatesh, G. & Elmi, Rashid Abdi, 2013. "Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)," Energy, Elsevier, vol. 58(C), pages 220-235.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:220-235
    DOI: 10.1016/j.energy.2013.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213004325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    2. Münster, Marie & Lund, Henrik, 2009. "Use of waste for heat, electricity and transport—Challenges when performing energy system analysis," Energy, Elsevier, vol. 34(5), pages 636-644.
    3. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    4. Basrawi, Mohamad Firdaus Bin & Yamada, Takanobu & Nakanishi, Kimio & Katsumata, Hideaki, 2012. "Analysis of the performances of biogas-fuelled micro gas turbine cogeneration systems (MGT-CGSs) in middle- and small-scale sewage treatment plants: Comparison of performances and optimization of MGTs," Energy, Elsevier, vol. 38(1), pages 291-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghoreyshi, Ali Asghar & Sadeghifar, Hamidreza & Entezarion, Fereshteh, 2014. "Efficiency assessment of air stripping packed towers for removal of VOCs (volatile organic compounds) from industrial and drinking waters," Energy, Elsevier, vol. 73(C), pages 838-843.
    2. Loh, S.K. & Nasrin, A.B. & Mohamad Azri, S. & Nurul Adela, B. & Muzzammil, N. & Daryl Jay, T. & Stasha Eleanor, R.A. & Lim, W.S. & Choo, Y.M. & Kaltschmitt, M., 2017. "First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: Current and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1257-1274.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. James, Christina Anne & Kavanagh, Marie & Manton, Carl & Soar, Jeffrey, 2023. "Revisiting recycled water for the next drought; a case study of South East Queensland, Australia," Utilities Policy, Elsevier, vol. 84(C).
    5. Mehr, A.S. & Moharramian, A. & Hossainpour, S. & Pavlov, Denis A., 2020. "Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system," Energy, Elsevier, vol. 202(C).
    6. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
    7. Gupta, Akash Som & Khatiwada, Dilip, 2024. "Investigating the sustainability of biogas recovery systems in wastewater treatment plants- A circular bioeconomy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    9. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & He, Yu & Lu, Longxi, 2018. "How to promote the development of energy-saving and emission-reduction with changing economic growth rate—A case study of China," Energy, Elsevier, vol. 143(C), pages 732-745.
    10. Mirmasoumi, Siamak & Ebrahimi, Sirous & Saray, Rahim Khoshbakhti, 2018. "Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions," Energy, Elsevier, vol. 157(C), pages 707-717.
    11. Abusoglu, Aysegul & Tozlu, Alperen & Anvari-Moghaddam, Amjad, 2021. "District heating and electricity production based on biogas produced from municipal WWTPs in Turkey: A comprehensive case study," Energy, Elsevier, vol. 223(C).
    12. Giuseppe Campo & Antonella Miggiano & Deborah Panepinto & Mariachiara Zanetti, 2023. "Enhancing the Energy Efficiency of Wastewater Treatment Plants through the Optimization of the Aeration Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    13. Budych-Gorzna, Magdalena & Smoczynski, Marcin & Oleskowicz-Popiel, Piotr, 2016. "Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste," Applied Energy, Elsevier, vol. 161(C), pages 387-394.
    14. Colmenar-Santos, Antonio & Bonilla-Gómez, José-Luis & Borge-Diez, David & Castro-Gil, Manuel, 2015. "Hybridization of concentrated solar power plants with biogas production systems as an alternative to premiums: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 186-197.
    15. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    16. Claudinei De Souza Guimarães & David Rodrigues da Silva Maia & Eduardo Gonçalves Serra, 2018. "Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage," Energies, MDPI, vol. 11(4), pages 1-10, April.
    17. Francisco M. Baena-Moreno & Isabel Malico & Isabel Paula Marques, 2021. "Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    18. Ferreira, Sérgio & Monteiro, Eliseu & Brito, Paulo & Vilarinho, Cândida, 2017. "Biomass resources in Portugal: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1221-1235.
    19. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Yungjin & Kawahara, Nobuyuki & Tsuboi, Kazuya & Tomita, Eiji, 2016. "Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine," Applied Energy, Elsevier, vol. 182(C), pages 539-547.
    2. Dong, Feiqing & Lu, Jianbo, 2013. "Using solar energy to enhance biogas production from livestock residue – A case study of the Tongren biogas engineering pig farm in South China," Energy, Elsevier, vol. 57(C), pages 759-765.
    3. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    4. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Valdés, Manuel & Abbas, Rubén & Rovira, Antonio & Martín-Aragón, Javier, 2016. "Thermal efficiency of direct, inverse and sCO2 gas turbine cycles intended for small power plants," Energy, Elsevier, vol. 100(C), pages 66-72.
    6. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    7. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    8. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    9. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    10. Satya Gopisetty & Peter Treffinger, 2016. "Generic Combined Heat and Power (CHP) Model for the Concept Phase of Energy Planning Process," Energies, MDPI, vol. 10(1), pages 1-17, December.
    11. Naja, Ghinwa M. & Alary, René & Bajeat, Philippe & Bellenfant, Gaël & Godon, Jean-Jacques & Jaeg, Jean-Philippe & Keck, Gérard & Lattes, Armand & Leroux, Carole & Modelon, Hugues & Moletta-Denat, Mari, 2011. "Assessment of biogas potential hazards," Renewable Energy, Elsevier, vol. 36(12), pages 3445-3451.
    12. Dahye Kim & Kyung-Tae Kim & Young-Kwon Park, 2020. "A Comparative Study on the Reduction Effect in Greenhouse Gas Emissions between the Combined Heat and Power Plant and Boiler," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    13. Rasi, Saija & Lehtinen, Jenni & Rintala, Jukka, 2010. "Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants," Renewable Energy, Elsevier, vol. 35(12), pages 2666-2673.
    14. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    15. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    16. Igliński, Bartłomiej & Buczkowski, Roman & Iglińska, Anna & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech, 2012. "Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4890-4900.
    17. Gustafsson, Marcus & Cordova, Stephanie S. & Svensson, Niclas & Eklund, Mats, 2024. "Climate performance of liquefied biomethane with carbon dioxide utilization or storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Ekaterina Matus & Mikhail Kerzhentsev & Ilyas Ismagilov & Andrey Nikitin & Sergey Sozinov & Zinfer Ismagilov, 2023. "Hydrogen Production from Biogas: Development of an Efficient Nickel Catalyst by the Exsolution Approach," Energies, MDPI, vol. 16(7), pages 1-21, March.
    19. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).
    20. Papurello, Davide & Chiodo, Vitaliano & Maisano, Susanna & Lanzini, Andrea & Santarelli, Massimo, 2018. "Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds," Renewable Energy, Elsevier, vol. 127(C), pages 481-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:220-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.