IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13998-d1244522.html
   My bibliography  Save this article

Superhydrophobic Microchannel Heat Exchanger for Electric Vehicle Heat Pump Performance Enhancement

Author

Listed:
  • Yunren Sui

    (School of Energy and Environment, City University of Hong Kong, Hong Kong, China
    Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
    These authors contributed equally to this work.)

  • Zengguang Sui

    (School of Energy and Environment, City University of Hong Kong, Hong Kong, China
    Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
    These authors contributed equally to this work.)

  • Guangda Liang

    (School of Energy and Environment, City University of Hong Kong, Hong Kong, China
    Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China)

  • Wei Wu

    (School of Energy and Environment, City University of Hong Kong, Hong Kong, China
    Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China)

Abstract

Battery-powered electric vehicles (EVs) have emerged as an environmentally friendly and efficient alternative to traditional internal combustion engine vehicles, while their single-charge driving distances under cold conditions are significantly limited due to the high energy consumption of their heating systems. Heat pumps can provide an effective heating solution for EVs, but their coefficient of performance (COP) is hampered by heat transfer deterioration due to frost accumulation. This study proposes a solution to this issue by introducing a microchannel heat exchanger (MHE) with superhydrophobic surface treatment (SHST) as a heat pump evaporator. A computational fluid dynamics MHE model and a dynamic heat pump model are developed and rigorously validated to examine the detrimental impact of frost accumulation on heat transfer, airflow resistance, and heat pump performance. When the frost layer thickness is 0.8 mm at a given air-side velocity of 1.0 m/s, the air-side heat transfer coefficient can be reduced by about 75%, and the air-side pressure drop sharply increases by 28.4 times. As frost thickness increases from 0 to 0.8 mm, the heating capacity drops from 3.97 to 1.82 kW, and the system COP declines from 3.17 to 2.30. Experimental results show that the frost thickness of the MHE with SHST reaches approximately 0.4 mm after 30 min, compared to that of 0.8 mm of the MHE without SHST, illustrating the defrosting capability of the superhydrophobic coating. The study concludes by comparing the performance of various heating methods in EVs to highlight the advantages of SHST technology. As compared to traditional heat pumps, the heating power consumption of the proposed system is reduced by 48.7% due to the defrosting effect of the SHST. Moreover, the single-charge driving distance is extended to 327.27 km, an improvement of 8.99% over the heat pump without SHST.

Suggested Citation

  • Yunren Sui & Zengguang Sui & Guangda Liang & Wei Wu, 2023. "Superhydrophobic Microchannel Heat Exchanger for Electric Vehicle Heat Pump Performance Enhancement," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13998-:d:1244522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Jakończuk & Kamil Śmierciew & Jerzy Gagan & Dariusz Butrymowicz, 2022. "Image-Analysis-Based Approach for Identification of Air Cooler Heat Transfer Degradation during Frosting Process," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    2. Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
    3. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    4. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.
    5. Bin Yang & Xin Zhu & Minzhang Liu & Zhihan Lv, 2022. "Review on the Application of Machine Vision in Defrosting and Decondensation on the Surface of Heat Exchanger," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    6. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    7. Ding, Zhixiong & Wu, Wei & Huang, Si-Min & Huang, Hongyu & Bai, Yu & He, Zhaohong, 2023. "A novel compression-assisted energy storage heat transformer for low-grade renewable energy utilization," Energy, Elsevier, vol. 263(PA).
    8. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    9. Florin Bode & Nicolae Vlad Burnete & Lucian Fechete Tutunaru & Ilinca Nastase, 2023. "Improving Electric Vehicle Range and Thermal Comfort through an Innovative Seat Heating System," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    10. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    11. Mohammad Omidi & Shu-Jie Liu & Soheil Mohtaram & Hui-Tian Lu & Hong-Chao Zhang, 2019. "Improving Centrifugal Compressor Performance by Optimizing the Design of Impellers Using Genetic Algorithm and Computational Fluid Dynamics Methods," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    12. Badri, Deyae & Toublanc, Cyril & Rouaud, Olivier & Havet, Michel, 2021. "Review on frosting, defrosting and frost management techniques in industrial food freezers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Angeliki Kitsopoulou & Antonis Zacharis & Nikolaos Ziozas & Evangelos Bellos & Petros Iliadis & Ioannis Lampropoulos & Eleni Chatzigeorgiou & Komninos Angelakoglou & Nikolaos Nikolopoulos, 2023. "Dynamic Energy Analysis of Different Heat Pump Heating Systems Exploiting Renewable Energy Sources," Sustainability, MDPI, vol. 15(14), pages 1-36, July.
    14. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    2. Badri, Deyae & Toublanc, Cyril & Rouaud, Olivier & Havet, Michel, 2021. "Review on frosting, defrosting and frost management techniques in industrial food freezers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Daria Krasota & Przemysław Błasiak & Piotr Kolasiński, 2023. "Literature Review of Frost Formation Phenomena on Domestic Refrigerators Evaporators," Energies, MDPI, vol. 16(7), pages 1-30, March.
    4. Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.
    5. Yaxiu Gu & Guixiang He & Shuaipeng Li & Weiqi Ding & Hanlin Li & Jiahui Duan, 2022. "Study on Frost-Suppression Characteristics of Superhydrophobic Aluminum Surface Heat Exchanger Applied in Air Source Heat Pump," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    6. Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
    7. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    8. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    9. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    10. Feiyu Hou & Fei Yao & Zheng Li, 2022. "A Torque-Compensated Fault-Tolerant Control Method for Electric Vehicle Traction Motor with Short-Circuit Fault," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    11. Luo, Zhenyu & Zhu, Na & Yu, Zhongyi & Zhang, Qin & Yan, Lei & Hu, Pingfang, 2024. "Performance study of dual-source heat pump integrated with radiation capillary terminal system," Energy, Elsevier, vol. 304(C).
    12. Shuxue, Xu & Yueyue, Wang & Jianhui, Niu & Guoyuan, Ma, 2020. "‘Coal-to-electricity’ project is ongoing in north China," Energy, Elsevier, vol. 191(C).
    13. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    14. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    15. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    16. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    17. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    18. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    19. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    20. Duc Nguyen Huu & Van Nguyen Ngoc, 2021. "Analysis Study of Current Transportation Status in Vietnam’s Urban Traffic and the Transition to Electric Two-Wheelers Mobility," Sustainability, MDPI, vol. 13(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13998-:d:1244522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.