IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v104y2013icp187-196.html
   My bibliography  Save this article

The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle

Author

Listed:
  • Ko, Younghwan
  • Park, Sangkyoung
  • Jin, Simon
  • Kim, Byungsoon
  • Jeong, Ji Hwan

Abstract

A conventional heat pump exhibits performance degradation even though larger heating capacity is needed as the outdoor temperature declines. As a way to prevent the performance degradation, a heat pump with an inverter-driven two-stage rotary compressor and vapor injection (VI) cycle was investigated for an air-to-water heat pump (AWHP) system employing a flash tank. The volume ratio of two cylinder of a two-stage rotary compressor has significant effect on the performance of the AWHP so that it was experimentally investigated. Based on this result, a two-stage rotary compressor designed with an optimized volume ratio was manufactured and incorporated into the AWHP system. It was found that the VI AWHP system improved the heating capacity by 48% and the COP by 36% compared to those values for the conventional AWHP at water temperature of 60°C and ambient temperature of −15°C. This VI AWHP system can be used for cold climate applications.

Suggested Citation

  • Ko, Younghwan & Park, Sangkyoung & Jin, Simon & Kim, Byungsoon & Jeong, Ji Hwan, 2013. "The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle," Applied Energy, Elsevier, vol. 104(C), pages 187-196.
  • Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:187-196
    DOI: 10.1016/j.apenergy.2012.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912008148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Guo-yuan & Chai, Qin-hu, 2004. "Characteristics of an improved heat-pump cycle for cold regions," Applied Energy, Elsevier, vol. 77(3), pages 235-247, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kofi Owura Amoabeng & Kwang Ho Lee & Jong Min Choi, 2019. "Modeling and Simulation Performance Evaluation of a Proposed Calorimeter for Testing a Heat Pump System," Energies, MDPI, vol. 12(23), pages 1-22, December.
    2. Bianchi, Giuseppe & Cipollone, Roberto, 2015. "Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors," Applied Energy, Elsevier, vol. 142(C), pages 95-107.
    3. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    4. Park, Young Sung & Jeong, Ji Hwan & Ahn, Byoung Ha, 2014. "Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition," Applied Energy, Elsevier, vol. 132(C), pages 99-107.
    5. Wang, Wenyi & Li, Yaoyu, 2019. "Intermediate pressure optimization for two-stage air-source heat pump with flash tank cycle vapor injection via extremum seeking," Applied Energy, Elsevier, vol. 238(C), pages 612-626.
    6. Zhiping Zhang & Hongye Qiu & Dantong Li & Zhilong He & Ziwen Xing & Lijian Wu, 2022. "Development of Ultra-High-Efficiency Medium-Capacity Chillers with Two-Stage Compression and Interstage Vapor Injection Technologies," Energies, MDPI, vol. 15(24), pages 1-19, December.
    7. Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
    8. Yao, Jian & Zheng, Sihang & Chen, Daochuan & Dai, Yanjun & Huang, Mingjun, 2021. "Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region," Energy, Elsevier, vol. 219(C).
    9. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.
    10. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    11. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongzhi Liu & Katsunori Nagano & Takao Katsura & Yue Han, 2020. "Experimental Investigation on a Vapor Injection Heat Pump System with a Single-Stage Compressor," Energies, MDPI, vol. 13(12), pages 1-19, June.
    2. Qin, Fei & Zhang, Guiying & Xue, Qingfeng & Zou, Huiming & Tian, Changqing, 2017. "Experimental investigation and theoretical analysis of heat pump systems with two different injection portholes compressors for electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 2085-2093.
    3. Mendoza, Luis Carlos & Lemofouet, Sylvain & Schiffmann, Jürg, 2017. "Testing and modelling of a novel oil-free co-rotating scroll machine with water injection," Applied Energy, Elsevier, vol. 185(P1), pages 201-213.
    4. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    5. Redón, A. & Navarro-Peris, E. & Pitarch, M. & Gonzálvez-Macia, J. & Corberán, J.M., 2014. "Analysis and optimization of subcritical two-stage vapor injection heat pump systems," Applied Energy, Elsevier, vol. 124(C), pages 231-240.
    6. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:104:y:2013:i:c:p:187-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.