IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1790-d1372117.html
   My bibliography  Save this article

Key Technologies and Application of Electric Scroll Compressors: A Review

Author

Listed:
  • Yubo Zhang

    (Research Center, School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Bin Peng

    (Research Center, School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Pengcheng Zhang

    (Research Center, School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Jian Sun

    (Research Center, School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Zhixiang Liao

    (Research Center, School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract

The electric scroll compressor is driven by a built-in electric motor that rotates the scroll disk. It is known for its simple structure, adjustability, and high efficiency, making it highly promising for various applications. This paper reviews the current application and research status of electric scroll compressors. It covers topics such as the optimal design of scroll compressor profiles, scroll disk leakage sealing, and computer simulation optimization design methods. Additionally, the progress and development trends of vapor-injection scroll compressors (SCVIs) are discussed. This paper also presents the latest research progress on the application of the new refrigerant CO 2 in electric scroll compressors, along with its latest applications that align with sustainable development requirements. Finally, this paper concludes with recommendations for the application of electric scroll compressors and suggests future directions for research.

Suggested Citation

  • Yubo Zhang & Bin Peng & Pengcheng Zhang & Jian Sun & Zhixiang Liao, 2024. "Key Technologies and Application of Electric Scroll Compressors: A Review," Energies, MDPI, vol. 17(7), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1790-:d:1372117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qin, Fei & Zhang, Guiying & Xue, Qingfeng & Zou, Huiming & Tian, Changqing, 2017. "Experimental investigation and theoretical analysis of heat pump systems with two different injection portholes compressors for electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 2085-2093.
    2. Xiaoran Li & Weifeng Wu & Jing Zhang & Chengqiang Guo & Feng Ke & Fuqiang Jiang, 2023. "Analysis of 3D Transient Flow in a High-Speed Scroll Refrigeration Compressor," Energies, MDPI, vol. 16(7), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    2. Yuan, Zhipeng & Liu, Qi & Luo, Baojun & Li, Zhenming & Fu, Jianqin & Chen, Jingwei, 2018. "Thermodynamic analysis of different oil flooded compression enhanced vapor injection cycles," Energy, Elsevier, vol. 154(C), pages 553-560.
    3. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    4. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    5. Zhang, Shaoliang & Liu, Shuli & Xu, Zhiqi & Chen, Hongkuan & Wang, Jihong & Li, Yongliang & Yar Khan, Sheher & Kumar, Mahesh, 2024. "Effect of the irradiation intensity on the photo-thermal conversion performance of composite phase change materials: An experimental approach," Renewable Energy, Elsevier, vol. 225(C).
    6. Zou, Huiming & Li, Xuan & Tang, Mingsheng & Wu, Jiang & Tian, Changqing & Butrymowicz, Dariusz & Ma, Yongde & Wang, Jin, 2020. "Temperature stage matching and experimental investigation of high-temperature cascade heat pump with vapor injection," Energy, Elsevier, vol. 212(C).
    7. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    8. Wang, Dandong & Zhang, Zhenyu & Yu, Binbin & Wang, Xinnan & Shi, Junye & Chen, Jiangping, 2019. "Experimental research on charge determination and accumulator behavior in trans-critical CO2 mobile air-conditioning system," Energy, Elsevier, vol. 183(C), pages 106-115.
    9. Kim, Dongwoo & Song, Kang Sub & Lim, Junyub & Kim, Yongchan, 2018. "Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions," Energy, Elsevier, vol. 155(C), pages 117-127.
    10. Kim, Dongwoo & Chung, Hyun Joon & Jeon, Yongseok & Jang, Dong Soo & Kim, Yongchan, 2017. "Optimization of the injection-port geometries of a vapor injection scroll compressor based on SCOP under various climatic conditions," Energy, Elsevier, vol. 135(C), pages 442-454.
    11. Han, Xinxin & Zou, Huiming & Wu, Jiang & Tian, Changqing & Tang, Mingsheng & Huang, Guangyan, 2020. "Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus," Renewable Energy, Elsevier, vol. 152(C), pages 835-848.
    12. Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
    13. Kim, Dongwoo & Myeong, Seongryeol & Cha, Dowon & Kim, Yongchan, 2019. "Novel optimized operating strategies of two-phase injection heat pumps for achieving best performance with safe compression," Energy, Elsevier, vol. 187(C).
    14. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1790-:d:1372117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.