IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics0360544223016596.html
   My bibliography  Save this article

Energy and environmental performance of vapor injection heat pumps using R134a, R152a, and R1234yf under various injection conditions

Author

Listed:
  • Maeng, Heegyu
  • Kim, Jinyoung
  • Kwon, Soonbum
  • Kim, Yongchan

Abstract

Vapor injection heat pumps have been used to mitigate performance degradation under severe operating conditions. Low-global-warming-potential (GWP) refrigerants have been used to replace R134a in heat pumps to comply with F-gas regulations. However, experimental and optimization analyses of vapor-injection heat pumps with low-GWP refrigerants are limited in terms of injection conditions. In this study, the energy and environmental performance of vapor-injection heat pumps containing low-GWP refrigerants were experimentally investigated under various injection conditions. The capacity and coefficient of performance (COP) of the vapor-injection heat pumps using R152a and R1234yf were optimized and compared to those using R134a under various injection conditions. The optimized vapor-injection heat pump using R152a increased the heating and cooling COPs by 5.7% and 1.3%, respectively, compared to those using R134a because of its lower power consumption. In addition, the life-cycle climate performance (LCCP) of the optimized vapor-injection heat pumps using R152a and R1234yf were 4.7% lower and 3.0% higher, respectively, than those using R134a under practical conditions. Overall, R152a is recommended as a preferred alternative for vapor-injection heat pumps because of its high COP and low LCCP.

Suggested Citation

  • Maeng, Heegyu & Kim, Jinyoung & Kwon, Soonbum & Kim, Yongchan, 2023. "Energy and environmental performance of vapor injection heat pumps using R134a, R152a, and R1234yf under various injection conditions," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016596
    DOI: 10.1016/j.energy.2023.128265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    2. Kim, Dongwoo & Lee, DongChan & Lee, Minwoo & Chung, Hyun Joon & Kim, Yongchan, 2021. "Energy performance evaluation of two-phase injection heat pump employing low-GWP refrigerant R32 under various outdoor conditions," Energy, Elsevier, vol. 214(C).
    3. Kim, Dongwoo & Chung, Hyun Joon & Jeon, Yongseok & Jang, Dong Soo & Kim, Yongchan, 2017. "Optimization of the injection-port geometries of a vapor injection scroll compressor based on SCOP under various climatic conditions," Energy, Elsevier, vol. 135(C), pages 442-454.
    4. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    5. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Cho, Il Yong & Seo, HyeongJoon & Kim, Dongwoo & Kim, Yongchan, 2016. "Performance comparison between R410A and R32 multi-heat pumps with a sub-cooler vapor injection in the heating and cooling modes," Energy, Elsevier, vol. 112(C), pages 179-187.
    7. Kim, Dongwoo & Myeong, Seongryeol & Cha, Dowon & Kim, Yongchan, 2019. "Novel optimized operating strategies of two-phase injection heat pumps for achieving best performance with safe compression," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    2. Kim, Dongwoo & Lee, DongChan & Lee, Minwoo & Chung, Hyun Joon & Kim, Yongchan, 2021. "Energy performance evaluation of two-phase injection heat pump employing low-GWP refrigerant R32 under various outdoor conditions," Energy, Elsevier, vol. 214(C).
    3. Kim, Dongwoo & Song, Kang Sub & Lim, Junyub & Kim, Yongchan, 2018. "Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions," Energy, Elsevier, vol. 155(C), pages 117-127.
    4. Zou, Lingeng & Liu, Ye & Yu, Jianlin, 2023. "Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle," Renewable Energy, Elsevier, vol. 217(C).
    5. Kim, Dongwoo & Myeong, Seongryeol & Cha, Dowon & Kim, Yongchan, 2019. "Novel optimized operating strategies of two-phase injection heat pumps for achieving best performance with safe compression," Energy, Elsevier, vol. 187(C).
    6. Wen, Qiangyu & Zhi, Ruiping & Wu, Yuting & Lei, Biao & Liu, Shanwei & Shen, Lili, 2020. "Performance optimization of a heat pump integrated with a single-screw refrigeration compressor with liquid refrigerant injection," Energy, Elsevier, vol. 207(C).
    7. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
    8. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    9. Chen, Guangming & Ierin, Volodymyr & Volovyk, Oleksii & Shestopalov, Kostyantyn, 2019. "An improved cascade mechanical compression–ejector cooling cycle," Energy, Elsevier, vol. 170(C), pages 459-470.
    10. Shuxue, Xu & Yueyue, Wang & Jianhui, Niu & Guoyuan, Ma, 2020. "‘Coal-to-electricity’ project is ongoing in north China," Energy, Elsevier, vol. 191(C).
    11. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    12. Ramesh, A.S. & Sekhar, S. Joseph, 2018. "Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector," Energy, Elsevier, vol. 164(C), pages 1097-1113.
    13. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    14. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    15. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    16. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.
    17. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    18. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    19. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    20. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.