IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp684-694.html
   My bibliography  Save this article

A hierarchical coordinated demand response control for buildings with improved performances at building group

Author

Listed:
  • Huang, Pei
  • Fan, Cheng
  • Zhang, Xingxing
  • Wang, Jiayuan

Abstract

Demand response control is one of the common means used for building peak demand limiting. Most of the existing demand response controls focused on single building’s performance optimization, and thus may cause new undesirable peak demands at building group, imposing stress on the grid power balance and limiting the economic savings. A few latest studies have demonstrated the potential benefits of demand response coordination, but the proposed methods cannot be applied in large scales. The main reason is that, for demand response coordination of multiple buildings, associated computational load and coordination complexity, increasing exponentially with building number, are challenges to be solved. This study, therefore, proposes a hierarchical demand response control to optimize operations of a large scale of buildings for group-level peak demand reduction. The hierarchical control first considers the building group as a ‘virtual’ building and searches the optimal performance that can be achieved at building group using genetic algorithm. To realize such optimal performance, it then coordinates each single building’s operation using non-linear programming. For validations, the proposed method has been applied on a case building group, and the study results show that the hierarchical control can overcome the challenges of excessive computational load and complexity. Moreover, in comparison with conventional independent control, it can achieve better performances in aspects of peak demand reduction and economic savings. This study provides a coordinated control for application in large scales, which can improve the effectiveness and efficiency in relieving the grid stress, and reduce the end-users’ electricity bills.

Suggested Citation

  • Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:684-694
    DOI: 10.1016/j.apenergy.2019.03.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919305574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
    2. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    3. Kim, Youngjin & Norford, Leslie K., 2017. "Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation," Applied Energy, Elsevier, vol. 193(C), pages 308-324.
    4. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    5. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    6. Cui, Borui & Wang, Shengwei & Sun, Yongjun, 2014. "Life-cycle cost benefit analysis and optimal design of small scale active storage system for building demand limiting," Energy, Elsevier, vol. 73(C), pages 787-800.
    7. Papadopoulos, Sokratis & Bonczak, Bartosz & Kontokosta, Constantine E., 2018. "Pattern recognition in building energy performance over time using energy benchmarking data," Applied Energy, Elsevier, vol. 221(C), pages 576-586.
    8. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    9. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    10. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.
    11. Xue, Xue & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2014. "An interactive building power demand management strategy for facilitating smart grid optimization," Applied Energy, Elsevier, vol. 116(C), pages 297-310.
    12. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    13. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    14. Sadineni, Suresh B. & Boehm, Robert F., 2012. "Measurements and simulations for peak electrical load reduction in cooling dominated climate," Energy, Elsevier, vol. 37(1), pages 689-697.
    15. Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
    16. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    17. Gao, Dian-ce & Sun, Yongjun & Lu, Yuehong, 2015. "A robust demand response control of commercial buildings for smart grid under load prediction uncertainty," Energy, Elsevier, vol. 93(P1), pages 275-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    2. Wang, Huilong & Wang, Shengwei & Shan, Kui, 2020. "Experimental study on the dynamics, quality and impacts of using variable-speed pumps in buildings for frequency regulation of smart power grids," Energy, Elsevier, vol. 199(C).
    3. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    4. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    5. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    6. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    7. Ren, Haoshan & Gao, Dian-ce & Ma, Zhenjun & Zhang, Sheng & Sun, Yongjun, 2024. "Data-driven surrogate optimization for deploying heterogeneous multi-energy storage to improve demand response performance at building cluster level," Applied Energy, Elsevier, vol. 356(C).
    8. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    9. Ju, Liwei & Wu, Jing & Lin, Hongyu & Tan, Qinliang & Li, Gen & Tan, Zhongfu & Li, Jiayu, 2020. "Robust purchase and sale transactions optimization strategy for electricity retailers with energy storage system considering two-stage demand response," Applied Energy, Elsevier, vol. 271(C).
    10. Gabriel Santos & Tiago Pinto & Zita Vale & Rui Carvalho & Brígida Teixeira & Carlos Ramos, 2021. "Upgrading BRICKS—The Context-Aware Semantic Rule-Based System for Intelligent Building Energy and Security Management," Energies, MDPI, vol. 14(15), pages 1-14, July.
    11. Wang, Huilong & Wang, Shengwei, 2021. "A disturbance compensation enhanced control strategy of HVAC systems for improved building indoor environment control when providing power grid frequency regulation," Renewable Energy, Elsevier, vol. 169(C), pages 1330-1342.
    12. Cheng, Lin & Wan, Yuxiang & Tian, Liting & Zhang, Fang, 2019. "Evaluating energy supply service reliability for commercial air conditioning loads from the distribution network aspect," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    14. Zhang, Yelin & Zhang, Xingxing & Huang, Pei & Sun, Yongjun, 2020. "Global sensitivity analysis for key parameters identification of net-zero energy buildings for grid interaction optimization," Applied Energy, Elsevier, vol. 279(C).
    15. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    2. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    3. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    4. Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
    5. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    6. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    7. Pei Huang & Xingxing Zhang & Benedetta Copertaro & Puneet Kumar Saini & Da Yan & Yi Wu & Xiangjie Chen, 2020. "A Technical Review of Modeling Techniques for Urban Solar Mobility: Solar to Buildings, Vehicles, and Storage (S2BVS)," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    8. Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
    9. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.
    10. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    11. Tang, Rui & Wang, Shengwei, 2019. "Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids," Applied Energy, Elsevier, vol. 242(C), pages 873-882.
    12. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Tang, Rui & Li, Hangxin & Wang, Shengwei, 2019. "A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage," Applied Energy, Elsevier, vol. 242(C), pages 809-820.
    14. Gruber, J.K. & Huerta, F. & Matatagui, P. & Prodanović, M., 2015. "Advanced building energy management based on a two-stage receding horizon optimization," Applied Energy, Elsevier, vol. 160(C), pages 194-205.
    15. Yang Zhang & Yuehong Lu & Changlong Wang & Zhijia Huang & Tao Lv, 2021. "Reward–Penalty Mechanism Based on Daily Energy Consumption for Net-Zero Energy Buildings," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    16. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    17. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    18. Pinto, Giuseppe & Kathirgamanathan, Anjukan & Mangina, Eleni & Finn, Donal P. & Capozzoli, Alfonso, 2022. "Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures," Applied Energy, Elsevier, vol. 310(C).
    19. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    20. Tang, Rui & Wang, Shengwei & Li, Hangxin, 2019. "Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids," Applied Energy, Elsevier, vol. 250(C), pages 118-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:684-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.