IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v201y2017icp382-396.html
   My bibliography  Save this article

Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

Author

Listed:
  • Cui, Borui
  • Gao, Dian-ce
  • Xiao, Fu
  • Wang, Shengwei

Abstract

This paper provides a method to evaluate the cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in commercial building. Active storage is capable of shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity for demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES for maximizing the life-cycle cost saving including capital cost associated with storage capacity as well as incentives from both fast DR and PLM. In the method, the active CTES operates under a fast DR control strategy during DR events and under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR events are obtained by using the proposed optimal design method. This research provides guidance in comprehensive evaluation of the cost-saving potential of active CTES integrated with HVAC system for building demand management including both fast DR and PLM.

Suggested Citation

  • Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
  • Handle: RePEc:eee:appene:v:201:y:2017:i:c:p:382-396
    DOI: 10.1016/j.apenergy.2016.12.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Candanedo, J.A. & Dehkordi, V.R. & Stylianou, M., 2013. "Model-based predictive control of an ice storage device in a building cooling system," Applied Energy, Elsevier, vol. 111(C), pages 1032-1045.
    2. Xue, Xue & Wang, Shengwei & Yan, Chengchu & Cui, Borui, 2015. "A fast chiller power demand response control strategy for buildings connected to smart grid," Applied Energy, Elsevier, vol. 137(C), pages 77-87.
    3. Cui, Borui & Wang, Shengwei & Sun, Yongjun, 2014. "Life-cycle cost benefit analysis and optimal design of small scale active storage system for building demand limiting," Energy, Elsevier, vol. 73(C), pages 787-800.
    4. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    5. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2016. "An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings," Applied Energy, Elsevier, vol. 173(C), pages 406-417.
    6. Lee, Wen-Shing & Chen, Yi -Ting & Wu, Ting-Hau, 2009. "Optimization for ice-storage air-conditioning system using particle swarm algorithm," Applied Energy, Elsevier, vol. 86(9), pages 1589-1595, September.
    7. Xue, Xue & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2014. "An interactive building power demand management strategy for facilitating smart grid optimization," Applied Energy, Elsevier, vol. 116(C), pages 297-310.
    8. Alimohammadisagvand, Behrang & Jokisalo, Juha & Kilpeläinen, Simo & Ali, Mubbashir & Sirén, Kai, 2016. "Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control," Applied Energy, Elsevier, vol. 174(C), pages 275-287.
    9. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
    10. Gao, Dian-ce & Sun, Yongjun & Lu, Yuehong, 2015. "A robust demand response control of commercial buildings for smart grid under load prediction uncertainty," Energy, Elsevier, vol. 93(P1), pages 275-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    2. Luo, Na & Hong, Tianzhen & Li, Hui & Jia, Ruoxi & Weng, Wenguo, 2017. "Data analytics and optimization of an ice-based energy storage system for commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 459-475.
    3. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    4. Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.
    5. Huang, Jing & Boland, John & Liu, Weidong & Xu, Chang & Zang, Haixiang, 2018. "A decision-making tool for determination of storage capacity in grid-connected PV systems," Renewable Energy, Elsevier, vol. 128(PA), pages 299-304.
    6. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    7. Xiaoyu Xu & Chun Chang & Xinxin Guo & Mingzhi Zhao, 2023. "Experimental and Numerical Study of the Ice Storage Process and Material Properties of Ice Storage Coils," Energies, MDPI, vol. 16(14), pages 1-18, July.
    8. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    9. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    10. Lake, Andrew & Rezaie, Behanz, 2018. "Energy and exergy efficiencies assessment for a stratified cold thermal energy storage," Applied Energy, Elsevier, vol. 220(C), pages 605-615.
    11. Chang, Chun & Xu, Xiaoyu & Guo, Xinxin & Yu, Rong & Rasakhodzhaev, Bakhramzhan & Bao, Daorina & Zhao, Mingzhi, 2024. "Experimental and numerical study during the solidification process of a vertical and horizontal coiled ice storage system," Energy, Elsevier, vol. 298(C).
    12. Ren, Haoshan & Gao, Dian-ce & Ma, Zhenjun & Zhang, Sheng & Sun, Yongjun, 2024. "Data-driven surrogate optimization for deploying heterogeneous multi-energy storage to improve demand response performance at building cluster level," Applied Energy, Elsevier, vol. 356(C).
    13. Cui, Borui & Fan, Cheng & Munk, Jeffrey & Mao, Ning & Xiao, Fu & Dong, Jin & Kuruganti, Teja, 2019. "A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses," Applied Energy, Elsevier, vol. 236(C), pages 101-116.
    14. Kamal, Rajeev & Moloney, Francesca & Wickramaratne, Chatura & Narasimhan, Arunkumar & Goswami, D.Y., 2019. "Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus," Applied Energy, Elsevier, vol. 246(C), pages 77-90.
    15. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
    16. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    17. Fanghan Su & Zhiyuan Wang & Yue Yuan & Chengcheng Song & Kejun Zeng & Yixing Chen & Rongpeng Zhang, 2023. "Enhanced Operation of Ice Storage System for Peak Load Management in Shopping Malls across Diverse Climate Zones," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    18. Ferrara, Maria & Rolfo, Andrea & Prunotto, Federico & Fabrizio, Enrico, 2019. "EDeSSOpt – Energy Demand and Supply Simultaneous Optimization for cost-optimized design: Application to a multi-family building," Applied Energy, Elsevier, vol. 236(C), pages 1231-1248.
    19. Liang, Zheming & Bian, Desong & Zhang, Xiaohu & Shi, Di & Diao, Ruisheng & Wang, Zhiwei, 2019. "Optimal energy management for commercial buildings considering comprehensive comfort levels in a retail electricity market," Applied Energy, Elsevier, vol. 236(C), pages 916-926.
    20. Liu, Yang & Sun, Yongjun & Gao, Dian-ce & Tan, Jiaqi & Chen, Yuxin, 2024. "Stacked ensemble learning approach for PCM-based double-pipe latent heat thermal energy storage prediction towards flexible building energy," Energy, Elsevier, vol. 294(C).
    21. Ebrahimi, Mahyar, 2020. "Storing electricity as thermal energy at community level for demand side management," Energy, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    2. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    3. Cui, Borui & Gao, Dian-ce & Wang, Shengwei & Xue, Xue, 2015. "Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications," Applied Energy, Elsevier, vol. 147(C), pages 523-535.
    4. Gert van Wyk & Vinessa Naidoo & E. Innocents Edoun, 2021. "Guiding Principles for Establishing Energy Consumption Reduction and Increase Production Performance in Manufacturing," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 502-515.
    5. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    6. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    7. Hurtado, L.A. & Rhodes, J.D. & Nguyen, P.H. & Kamphuis, I.G. & Webber, M.E., 2017. "Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones," Applied Energy, Elsevier, vol. 195(C), pages 1047-1054.
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    9. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    10. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
    11. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).
    12. Yuchun Li & Yinghua Han & Jinkuan Wang & Qiang Zhao, 2018. "A MBCRF Algorithm Based on Ensemble Learning for Building Demand Response Considering the Thermal Comfort," Energies, MDPI, vol. 11(12), pages 1-20, December.
    13. Gruber, J.K. & Huerta, F. & Matatagui, P. & Prodanović, M., 2015. "Advanced building energy management based on a two-stage receding horizon optimization," Applied Energy, Elsevier, vol. 160(C), pages 194-205.
    14. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    15. Zhang, Xiangyu & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "A self-learning algorithm for coordinated control of rooftop units in small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 205(C), pages 1034-1049.
    16. Wang, Huilong & Wang, Shengwei & Tang, Rui, 2019. "Development of grid-responsive buildings: Opportunities, challenges, capabilities and applications of HVAC systems in non-residential buildings in providing ancillary services by fast demand responses," Applied Energy, Elsevier, vol. 250(C), pages 697-712.
    17. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    18. Cui, Borui & Fan, Cheng & Munk, Jeffrey & Mao, Ning & Xiao, Fu & Dong, Jin & Kuruganti, Teja, 2019. "A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses," Applied Energy, Elsevier, vol. 236(C), pages 101-116.
    19. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    20. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:201:y:2017:i:c:p:382-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.