IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp911-921.html
   My bibliography  Save this article

A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level

Author

Listed:
  • Huang, Pei
  • Sun, Yongjun

Abstract

Collaborations (e.g. renewable energy sharing) among nearly zero energy buildings can improve performances at cluster level. Demand response control is helpful to enable such collaborations. Existing studies have developed some dynamic pricing demand response control methods to reduce the nearly zero energy building cluster’ electricity bills and eliminate the power grid's undesirable peaks. However, in these controls the collaborations among buildings are not allowed/enabled, since each building interacts with the grid and there is no direct interaction among buildings. Meanwhile, for performance optimizations at building cluster level, the computation costs of these non-collaborative controls are excessively high especially as a number of buildings considered. Therefore, this study proposes a collaborative demand response of nearly zero energy buildings in response to dynamic pricing for cluster-level performance improvements. Considering the building cluster as one ‘lumped’ building, in which the renewable generations, energy demands and battery capacities of individual buildings are aggregated, the collaborative control first identifies the optimal performance at cluster level in response to the dynamic pricing. Then, based on the identified optimal performance, the proposed control coordinates individual buildings' operations using non-linear programming, thereby realizing the collaborations. For validation, the proposed collaborative demand response control is compared with a game-theory based non-collaborative demand response control. The developed control effectively reduces the cluster-level peak energy exchanges and electricity bills by 18% and 45.2%, respectively, with significant computational load reduction. This study will provide the decision makers a computation-efficient demand response control of nearly zero energy buildings which enables full collaborations and thus helps improve the performances.

Suggested Citation

  • Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:911-921
    DOI: 10.1016/j.energy.2019.02.192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    2. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    3. Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
    4. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    5. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    6. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    7. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    8. Xue, Xue & Wang, Shengwei & Yan, Chengchu & Cui, Borui, 2015. "A fast chiller power demand response control strategy for buildings connected to smart grid," Applied Energy, Elsevier, vol. 137(C), pages 77-87.
    9. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    10. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
    11. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    12. Hong, Seung Ho & Yu, Mengmeng & Huang, Xuefei, 2015. "A real-time demand response algorithm for heterogeneous devices in buildings and homes," Energy, Elsevier, vol. 80(C), pages 123-132.
    13. Jafari-Marandi, Ruholla & Hu, Mengqi & Omitaomu, OluFemi A., 2016. "A distributed decision framework for building clusters with different heterogeneity settings," Applied Energy, Elsevier, vol. 165(C), pages 393-404.
    14. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    15. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    2. Pengying Wang & Shuo Zhang, 2022. "Retrofitting Strategies Based on Orthogonal Array Testing to Develop Nearly Zero Energy Buildings," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    3. Pei Huang & Xingxing Zhang & Benedetta Copertaro & Puneet Kumar Saini & Da Yan & Yi Wu & Xiangjie Chen, 2020. "A Technical Review of Modeling Techniques for Urban Solar Mobility: Solar to Buildings, Vehicles, and Storage (S2BVS)," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    4. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    5. Wang, Huilong & Wang, Shengwei, 2021. "A disturbance compensation enhanced control strategy of HVAC systems for improved building indoor environment control when providing power grid frequency regulation," Renewable Energy, Elsevier, vol. 169(C), pages 1330-1342.
    6. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2022. "Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings," Applied Energy, Elsevier, vol. 312(C).
    7. Tushar, Wayes & Lan, Lan & Withanage, Chathura & Sng, Hui En Karen & Yuen, Chau & Wood, Kristin L. & Saha, Tapan Kumar, 2020. "Exploiting design thinking to improve energy efficiency of buildings," Energy, Elsevier, vol. 197(C).
    8. Wang, Huilong & Wang, Shengwei & Shan, Kui, 2020. "Experimental study on the dynamics, quality and impacts of using variable-speed pumps in buildings for frequency regulation of smart power grids," Energy, Elsevier, vol. 199(C).
    9. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    10. Zhang, Guiqing & Tian, Chenlu & Li, Chengdong & Zhang, Jun Jason & Zuo, Wangda, 2020. "Accurate forecasting of building energy consumption via a novel ensembled deep learning method considering the cyclic feature," Energy, Elsevier, vol. 201(C).
    11. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    2. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    3. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    4. Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
    5. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    6. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    7. Gokula Manikandan Senthil Kumar & Sunliang Cao, 2021. "State-of-the-Art Review of Positive Energy Building and Community Systems," Energies, MDPI, vol. 14(16), pages 1-54, August.
    8. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    9. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    10. Lu, Yuehong & Zhang, Xiao-Ping & Huang, Zhijia & Lu, Jinli & Wang, Dong, 2019. "Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings," Applied Energy, Elsevier, vol. 235(C), pages 106-116.
    11. Gao, Dian-ce & Sun, Yongjun & Zhang, Xingxing & Huang, Pei & Yelin Zhang,, 2022. "A GA-based NZEB-cluster planning and design optimization method for mitigating grid overvoltage risk," Energy, Elsevier, vol. 243(C).
    12. Pei Huang & Xingxing Zhang & Benedetta Copertaro & Puneet Kumar Saini & Da Yan & Yi Wu & Xiangjie Chen, 2020. "A Technical Review of Modeling Techniques for Urban Solar Mobility: Solar to Buildings, Vehicles, and Storage (S2BVS)," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    13. Zhang, Yelin & Zhang, Xingxing & Huang, Pei & Sun, Yongjun, 2020. "Global sensitivity analysis for key parameters identification of net-zero energy buildings for grid interaction optimization," Applied Energy, Elsevier, vol. 279(C).
    14. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    15. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    16. Yang Zhang & Yuehong Lu & Changlong Wang & Zhijia Huang & Tao Lv, 2021. "Reward–Penalty Mechanism Based on Daily Energy Consumption for Net-Zero Energy Buildings," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    17. Zinzi, Michele & Mattoni, Benedetta, 2019. "Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.
    19. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    20. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:911-921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.