IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922013010.html
   My bibliography  Save this article

Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany

Author

Listed:
  • Huang, Pei
  • Han, Mengjie
  • Zhang, Xingxing
  • Hussain, Syed Asad
  • Jayprakash Bhagat, Rohit
  • Hogarehalli Kumar, Deepu

Abstract

Peer-to-peer (P2P) renewable power sharing within a building community is a promising solution to enhance the community’s self-sufficiency and relieve the grid stress posed by the increased deployment of distributed renewable power. Existing studies have pointed out that the energy sharing potentials of a building community are affected by various factors including location, community scale, renewable energy system (RES) capacity, energy system type, storage integration, etc. However, the impacts of these factors on the energy sharing potentials in a building community are not fully studied. Being unaware of those factors’ impacts could lead to reduced energy sharing potentials and thus limit the associated improvement in energy and economic performances. Thus, this study conducts a comprehensive analysis of various factors’ impacts on the energy sharing performances in building communities. Two performance indicators are first proposed to quantify the energy sharing performances: total amount of energy sharing and energy sharing ratio (ESR). Then, parametric studies are conducted based on real electricity demand data in three countries to reveal how these factors affect the proposed indictors and improvements in self-sufficiency, electricity costs, and energy exchanges with the power grid. Next, a genetic algorithm based design method is developed to optimize the influential parameters to maximize the energy sharing potentials in a community. The study results show that the main influential factors are RES capacity ratio, PV capacity ratio, and energy storage system capacity. A large energy storage capacity can enhance the ESR. To achieve the maximized ESR, the optimal RES capacity ratio should be around 0.4 ∼ 1.1. The maximum energy sharing ratio is usually smaller in high latitude districts such as Sweden. This study characterizes the energy sharing performances and provides a novel perspective to optimize the design of energy systems in energy sharing communities. It can pave the way for the large integration of distributed renewable power in the future.

Suggested Citation

  • Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013010
    DOI: 10.1016/j.apenergy.2022.120044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    2. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    3. Duvignau, Romaric & Heinisch, Verena & Göransson, Lisa & Gulisano, Vincenzo & Papatriantafilou, Marina, 2021. "Benefits of small-size communities for continuous cost-optimization in peer-to-peer energy sharing," Applied Energy, Elsevier, vol. 301(C).
    4. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    5. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    6. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    7. Jafari-Marandi, Ruholla & Hu, Mengqi & Omitaomu, OluFemi A., 2016. "A distributed decision framework for building clusters with different heterogeneity settings," Applied Energy, Elsevier, vol. 165(C), pages 393-404.
    8. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    9. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    10. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Shiting & Wu, Jun & Gao, Yao & Zhu, Ruijin, 2023. "A high altitude prosumer energy cooperation framework considering composite energy storage sharing and electric‑oxygen‑hydrogen flexible supply," Applied Energy, Elsevier, vol. 349(C).
    2. Berg, Kjersti & Hernandez-Matheus, Alejandro & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Farahmand, Hossein, 2024. "Load configuration impact on energy community and distribution grid: Quantifying costs, emissions and grid exchange," Applied Energy, Elsevier, vol. 363(C).
    3. Cui, Shiting & Gao, Yao & Zhu, Ruijin, 2024. "A new integrated energy system cluster energy sharing framework adapted to high altitude areas," Applied Energy, Elsevier, vol. 366(C).
    4. Zhou, Shijie & Cao, Sunliang, 2024. "Co-ordinations of ocean energy supported energy sharing between zero-emission cross-harbour buildings in the Greater Bay Area," Applied Energy, Elsevier, vol. 359(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    2. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    3. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    4. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    5. Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
    6. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    7. Huang, Pei & Sun, Yongjun & Lovati, Marco & Zhang, Xingxing, 2021. "Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements," Energy, Elsevier, vol. 222(C).
    8. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.
    9. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.
    10. Gao, Dian-ce & Sun, Yongjun & Zhang, Xingxing & Huang, Pei & Yelin Zhang,, 2022. "A GA-based NZEB-cluster planning and design optimization method for mitigating grid overvoltage risk," Energy, Elsevier, vol. 243(C).
    11. Pei Huang & Xingxing Zhang & Benedetta Copertaro & Puneet Kumar Saini & Da Yan & Yi Wu & Xiangjie Chen, 2020. "A Technical Review of Modeling Techniques for Urban Solar Mobility: Solar to Buildings, Vehicles, and Storage (S2BVS)," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    12. Zhang, Yelin & Zhang, Xingxing & Huang, Pei & Sun, Yongjun, 2020. "Global sensitivity analysis for key parameters identification of net-zero energy buildings for grid interaction optimization," Applied Energy, Elsevier, vol. 279(C).
    13. Zheng, Siqian & Jin, Xin & Huang, Gongsheng & Lai, Alvin CK., 2022. "Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system," Energy, Elsevier, vol. 248(C).
    14. Zinzi, Michele & Mattoni, Benedetta, 2019. "Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Board, Anthony & Sun, Yongjun & Huang, Pei & Xu, Tao, 2024. "Community-to-vehicle-to-community (C2V2C) for inter-community electricity delivery and sharing via electric vehicle: Performance evaluation and robustness analysis," Applied Energy, Elsevier, vol. 363(C).
    16. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    17. Gokula Manikandan Senthil Kumar & Sunliang Cao, 2021. "State-of-the-Art Review of Positive Energy Building and Community Systems," Energies, MDPI, vol. 14(16), pages 1-54, August.
    18. May, Ross & Huang, Pei, 2023. "A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets," Applied Energy, Elsevier, vol. 334(C).
    19. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    20. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.