IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipbs1364032123008754.html
   My bibliography  Save this article

Key district heating technologies for building energy flexibility: A review

Author

Listed:
  • Guo, Yurun
  • Wang, Shugang
  • Wang, Jihong
  • Zhang, Tengfei
  • Ma, Zhenjun
  • Jiang, Shuang

Abstract

In the background of the continued integration of renewable energy sources (RES) and the increasing flexibility on the demand side, the diversity and complexity of new technologies for heating present increased challenges for design and operation of district heating systems (DHS). This work first reviews the progress of the new generation of DHS, followed by providing an overview of investigations on building energy flexibility in the field of heating, with a focus on the characterization and quantification of energy flexibility, the realization of thermal flexibility, and the use of building thermal mass in demand side management (DSM). Different technologies were categorized and summarized according to the composition of the new generation of DHS. Control strategies such as model predictive control were also examined. In particular, the concept of building thermal battery is used to analyze buildings or prosumers thermal energy flexibility. Finally, new elements of DHS development and potential challenges were discussed.

Suggested Citation

  • Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008754
    DOI: 10.1016/j.rser.2023.114017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simone Buffa & Anton Soppelsa & Mauro Pipiciello & Gregor Henze & Roberto Fedrizzi, 2020. "Fifth-Generation District Heating and Cooling Substations: Demand Response with Artificial Neural Network-Based Model Predictive Control," Energies, MDPI, vol. 13(17), pages 1-25, August.
    2. Guelpa, Elisa & Marincioni, Ludovica & Verda, Vittorio, 2019. "Towards 4th generation district heating: Prediction of building thermal load for optimal management," Energy, Elsevier, vol. 171(C), pages 510-522.
    3. Yang, Xiaochen & Svendsen, Svend, 2018. "Ultra-low temperature district heating system with central heat pump and local boosters for low-heat-density area: Analyses on a real case in Denmark," Energy, Elsevier, vol. 159(C), pages 243-251.
    4. Sommer, Tobias & Sulzer, Matthias & Wetter, Michael & Sotnikov, Artem & Mennel, Stefan & Stettler, Christoph, 2020. "The reservoir network: A new network topology for district heating and cooling," Energy, Elsevier, vol. 199(C).
    5. Kauko, Hanne & Kvalsvik, Karoline Husevåg & Rohde, Daniel & Nord, Natasa & Utne, Åmund, 2018. "Dynamic modeling of local district heating grids with prosumers: A case study for Norway," Energy, Elsevier, vol. 151(C), pages 261-271.
    6. Köfinger, M. & Basciotti, D. & Schmidt, R.R. & Meissner, E. & Doczekal, C. & Giovannini, A., 2016. "Low temperature district heating in Austria: Energetic, ecologic and economic comparison of four case studies," Energy, Elsevier, vol. 110(C), pages 95-104.
    7. Lazos, Dimitris & Sproul, Alistair B. & Kay, Merlinde, 2014. "Optimisation of energy management in commercial buildings with weather forecasting inputs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 587-603.
    8. Leśko, Michał & Bujalski, Wojciech & Futyma, Kamil, 2018. "Operational optimization in district heating systems with the use of thermal energy storage," Energy, Elsevier, vol. 165(PA), pages 902-915.
    9. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    10. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    11. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    12. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    13. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    14. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Fiorentini, Massimo & Wall, Josh & Ma, Zhenjun & Braslavsky, Julio H. & Cooper, Paul, 2017. "Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage," Applied Energy, Elsevier, vol. 187(C), pages 465-479.
    16. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    17. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    18. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    19. Ottesen, Stig Odegaard & Tomasgard, Asgeir, 2015. "A stochastic model for scheduling energy flexibility in buildings," Energy, Elsevier, vol. 88(C), pages 364-376.
    20. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    21. Li, Ruizhi & Yan, Xiaohe & Liu, Nian, 2022. "Hybrid energy sharing considering network cost for prosumers in integrated energy systems," Applied Energy, Elsevier, vol. 323(C).
    22. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    23. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    24. Ziemele, Jelena & Cilinskis, Einars & Blumberga, Dagnija, 2018. "Pathway and restriction in district heating systems development towards 4th generation district heating," Energy, Elsevier, vol. 152(C), pages 108-118.
    25. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    26. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    27. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures," Energy, Elsevier, vol. 110(C), pages 65-74.
    28. Edtmayer, Hermann & Nageler, Peter & Heimrath, Richard & Mach, Thomas & Hochenauer, Christoph, 2021. "Investigation on sector coupling potentials of a 5th generation district heating and cooling network," Energy, Elsevier, vol. 230(C).
    29. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    30. Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
    31. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    32. Bünning, Felix & Wetter, Michael & Fuchs, Marcus & Müller, Dirk, 2018. "Bidirectional low temperature district energy systems with agent-based control: Performance comparison and operation optimization," Applied Energy, Elsevier, vol. 209(C), pages 502-515.
    33. Aoun, Nadine & Bavière, Roland & Vallée, Mathieu & Aurousseau, Antoine & Sandou, Guillaume, 2019. "Modelling and flexible predictive control of buildings space-heating demand in district heating systems," Energy, Elsevier, vol. 188(C).
    34. Revesz, Akos & Jones, Phil & Dunham, Chris & Davies, Gareth & Marques, Catarina & Matabuena, Rodrigo & Scott, Jim & Maidment, Graeme, 2020. "Developing novel 5th generation district energy networks," Energy, Elsevier, vol. 201(C).
    35. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
    36. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    37. Pelda, Johannes & Holler, Stefan, 2019. "Spatial distribution of the theoretical potential of waste heat from sewage: A statistical approach," Energy, Elsevier, vol. 180(C), pages 751-762.
    38. Taillon, J. & Blanchard, R.E., 2015. "Exergy efficiency graphs for thermal power plants," Energy, Elsevier, vol. 88(C), pages 57-66.
    39. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    40. Sungmin Yoon & Youngwoong Choi & Jabeom Koo & Yejin Hong & Ryunhee Kim & Joowook Kim, 2020. "Virtual Sensors for Estimating District Heating Energy Consumption under Sensor Absences in a Residential Building," Energies, MDPI, vol. 13(22), pages 1-13, November.
    41. Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
    42. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    43. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    44. Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).
    45. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    46. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    47. Reynders, Glenn & Diriken, Jan & Saelens, Dirk, 2017. "Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings," Applied Energy, Elsevier, vol. 198(C), pages 192-202.
    48. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    49. Arabkoohsar, A., 2019. "Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks," Energy, Elsevier, vol. 170(C), pages 931-941.
    50. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2016. "Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios," Energy, Elsevier, vol. 94(C), pages 273-291.
    51. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    52. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    53. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    54. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    55. Ptasinski, K.J. & Koymans, M.N. & Verspagen, H.H.G., 2006. "Performance of the Dutch Energy Sector based on energy, exergy and Extended Exergy Accounting," Energy, Elsevier, vol. 31(15), pages 3135-3144.
    56. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    57. Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
    58. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2020. "Influence of centralized and distributed thermal energy storage on district heating network design," Energy, Elsevier, vol. 202(C).
    59. István G. Balázs & Attila Fodor & Attila Magyar, 2021. "Quantification of the Flexibility of Residential Prosumers," Energies, MDPI, vol. 14(16), pages 1-21, August.
    60. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    61. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    62. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    63. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    64. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    65. Zhong, Wei & Feng, Encheng & Lin, Xiaojie & Xie, Jinfang, 2022. "Research on data-driven operation control of secondary loop of district heating system," Energy, Elsevier, vol. 239(PB).
    66. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    67. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    68. Licklederer, Thomas & Hamacher, Thomas & Kramer, Michael & Perić, Vedran S., 2021. "Thermohydraulic model of Smart Thermal Grids with bidirectional power flow between prosumers," Energy, Elsevier, vol. 230(C).
    69. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    70. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    71. Vandermeulen, Annelies & van der Heijde, Bram & Helsen, Lieve, 2018. "Controlling district heating and cooling networks to unlock flexibility: A review," Energy, Elsevier, vol. 151(C), pages 103-115.
    72. Bampoulas, Adamantios & Saffari, Mohammad & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2021. "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems," Applied Energy, Elsevier, vol. 282(PA).
    73. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    74. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    75. Gross, Michel & Karbasi, Babak & Reiners, Tobias & Altieri, Lisa & Wagner, Hermann-Josef & Bertsch, Valentin, 2021. "Implementing prosumers into heating networks," Energy, Elsevier, vol. 230(C).
    76. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    77. Cai, Hanmin & Ziras, Charalampos & You, Shi & Li, Rongling & Honoré, Kristian & Bindner, Henrik W., 2018. "Demand side management in urban district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 506-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munćan, Vladimir & Mujan, Igor & Macura, Dušan & Anđelković, Aleksandar S., 2024. "The state of district heating and cooling in Europe - A literature-based assessment," Energy, Elsevier, vol. 304(C).
    2. Guo, Chengke & Zhang, Ji & Yuan, Han & Yuan, Yonggong & Wang, Haifeng & Mei, Ning, 2024. "Informer-based model predictive control framework considering group controlled hydraulic balance model to improve the precision of client heat load control in district heating system," Applied Energy, Elsevier, vol. 373(C).
    3. Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    3. Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Dino, Giuseppe Edoardo & Catrini, Pietro & Buscemi, Alessandro & Piacentino, Antonio & Palomba, Valeria & Frazzica, Andrea, 2023. "Modeling of a bidirectional substation in a district heating network: Validation, dynamic analysis, and application to a solar prosumer," Energy, Elsevier, vol. 284(C).
    6. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    7. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    8. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    9. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    10. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    11. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    12. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    13. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    14. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    15. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    16. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    17. Paolo Sdringola & Mattia Ricci & Maria Alessandra Ancona & Federico Gianaroli & Cristina Capodaglio & Francesco Melino, 2023. "Modelling a Prototype of Bidirectional Substation for District Heating with Thermal Prosumers," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    18. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    19. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    20. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.