IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp215-227.html
   My bibliography  Save this article

A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty

Author

Listed:
  • Huang, Pei
  • Sun, Yongjun

Abstract

Collaborations among nZEBs (e.g. renewable energy sharing and battery sharing) can improve the nZEBs' performance at the cluster level. To enable such collaborations, existing studies have developed many demand response control methods to control the operation of nZEB systems. Unfortunately, due to lack of consideration of demand prediction uncertainty, most of the demand response control methods fail to achieve the desired performance. A few methods have considered the impacts of uncertainty, but they merely perform simple and limited collaborations among nZEBs, and thus they cannot achieve the optimal performance at the cluster level. This paper, therefore, proposes a nZEB control method that enables full collaborations among nZEBs and takes account of the demand prediction uncertainty. The proposed robust control method first analyzes the demand prediction uncertainty, next optimizes the nZEB cluster operation under uncertainty, and then coordinates single nZEB's operation using the cluster operational parameters. The performance of the robust control has been studied and compared with a deterministic control. Case studies show that the robust control can effectively increase the cluster load matching and reduce the grid interaction with the demand prediction uncertainty existed. The proposed method can achieve robust performance improvements for the nZEB cluster in practice particularly as uncertainty exists.

Suggested Citation

  • Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:215-227
    DOI: 10.1016/j.renene.2018.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Fei & Xia, Xiaohua, 2017. "Techno-economic and environmental optimization of a household photovoltaic-battery hybrid power system within demand side management," Renewable Energy, Elsevier, vol. 108(C), pages 132-143.
    2. Faria, Pedro & Soares, Tiago & Vale, Zita & Morais, Hugo, 2014. "Distributed generation and demand response dispatch for a virtual power player energy and reserve provision," Renewable Energy, Elsevier, vol. 66(C), pages 686-695.
    3. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    4. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    5. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    6. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    7. Li, Xiwang & Wen, Jin & Malkawi, Ali, 2016. "An operation optimization and decision framework for a building cluster with distributed energy systems," Applied Energy, Elsevier, vol. 178(C), pages 98-109.
    8. Nord, Natasa & Qvistgaard, Live Holmedal & Cao, Guangyu, 2016. "Identifying key design parameters of the integrated energy system for a residential Zero Emission Building in Norway," Renewable Energy, Elsevier, vol. 87(P3), pages 1076-1087.
    9. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    10. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    11. Saman, Wasim Y., 2013. "Towards zero energy homes down under," Renewable Energy, Elsevier, vol. 49(C), pages 211-215.
    12. Jafari-Marandi, Ruholla & Hu, Mengqi & Omitaomu, OluFemi A., 2016. "A distributed decision framework for building clusters with different heterogeneity settings," Applied Energy, Elsevier, vol. 165(C), pages 393-404.
    13. Gao, Dian-ce & Sun, Yongjun & Lu, Yuehong, 2015. "A robust demand response control of commercial buildings for smart grid under load prediction uncertainty," Energy, Elsevier, vol. 93(P1), pages 275-283.
    14. Neves, Diana & Brito, Miguel C. & Silva, Carlos A., 2016. "Impact of solar and wind forecast uncertainties on demand response of isolated microgrids," Renewable Energy, Elsevier, vol. 87(P2), pages 1003-1015.
    15. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    16. Loi, Tian Sheng Allan & Ng, Jia Le, 2018. "Anticipating electricity prices for future needs – Implications for liberalised retail markets," Applied Energy, Elsevier, vol. 212(C), pages 244-264.
    17. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    2. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    3. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    4. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    5. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    2. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    3. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    4. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    5. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    6. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    7. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    8. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Lu, Yuehong & Zhang, Xiao-Ping & Huang, Zhijia & Lu, Jinli & Wang, Dong, 2019. "Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings," Applied Energy, Elsevier, vol. 235(C), pages 106-116.
    10. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    11. Yang Zhang & Yuehong Lu & Changlong Wang & Zhijia Huang & Tao Lv, 2021. "Reward–Penalty Mechanism Based on Daily Energy Consumption for Net-Zero Energy Buildings," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    12. Huang, Zhijia & Lu, Yuehong & Wei, Mengmeng & Liu, Jingjing, 2017. "Performance analysis of optimal designed hybrid energy systems for grid-connected nearly/net zero energy buildings," Energy, Elsevier, vol. 141(C), pages 1795-1809.
    13. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    14. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    15. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    16. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
    17. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    18. Garshasbi, Samira & Kurnitski, Jarek & Mohammadi, Yousef, 2016. "A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings," Applied Energy, Elsevier, vol. 179(C), pages 626-637.
    19. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    20. Li, Xiwang & Wen, Jin & Malkawi, Ali, 2016. "An operation optimization and decision framework for a building cluster with distributed energy systems," Applied Energy, Elsevier, vol. 178(C), pages 98-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:215-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.