IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp536-549.html
   My bibliography  Save this article

A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level

Author

Listed:
  • Fan, Cheng
  • Huang, Gongsheng
  • Sun, Yongjun

Abstract

Due to inherent differences in building usage and system configuration, NZEBs frequently show different sufficiency of renewable energy at same moments, thereby providing chances of renewable-energy-sharing among NZEBs. Conventional controls are developed for NZEB performance improvements at single building level while potential collaborations (renewable energy sharing) between NZEBs are rarely considered. For this reason, they are unable to achieve optimized results at building group level. This study thus proposes a new collaborative control in which renewable energy sharing are realized among NZEBs. Adopting different objective functions, case studies have been conducted to compare the proposed control with a conventional one in two aspects, i.e. operation cost and grid friendliness. The study results have shown that the proposed collaborative control is able to achieve performance improvements through renewable energy sharing among NZEBs. The proposed collaborative control can be implemented in practice to realize renewable energy sharing among NZEBs and thus improve the cost effectiveness and grid friendliness at building group level.

Suggested Citation

  • Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:536-549
    DOI: 10.1016/j.energy.2018.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421831778X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Bacha, Seddik & Rodríguez, Pedro, 2011. "Optimal economic exploitation of hydrogen based grid-friendly zero energy buildings," Renewable Energy, Elsevier, vol. 36(1), pages 197-205.
    2. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    3. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Shan, Kui, 2015. "Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings," Energy, Elsevier, vol. 93(P2), pages 1595-1606.
    4. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    5. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    6. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    7. Milan, Christian & Bojesen, Carsten & Nielsen, Mads Pagh, 2012. "A cost optimization model for 100% renewable residential energy supply systems," Energy, Elsevier, vol. 48(1), pages 118-127.
    8. Kalnæs, Simen Edsjø & Jelle, Bjørn Petter, 2014. "Vacuum insulation panel products: A state-of-the-art review and future research pathways," Applied Energy, Elsevier, vol. 116(C), pages 355-375.
    9. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    10. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    11. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    12. Abedi, S. & Alimardani, A. & Gharehpetian, G.B. & Riahy, G.H. & Hosseinian, S.H., 2012. "A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1577-1587.
    13. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    14. Dominković, D.F. & Gianniou, P. & Münster, M. & Heller, A. & Rode, C., 2018. "Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization," Energy, Elsevier, vol. 153(C), pages 949-966.
    15. Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.
    16. Congedo, Paolo Maria & Baglivo, Cristina & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal design for nearly zero energy office buildings located in warm climates," Energy, Elsevier, vol. 91(C), pages 967-982.
    17. Guelpa, Elisa & Barbero, Giulia & Sciacovelli, Adriano & Verda, Vittorio, 2017. "Peak-shaving in district heating systems through optimal management of the thermal request of buildings," Energy, Elsevier, vol. 137(C), pages 706-714.
    18. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    2. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    3. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    4. Tao Lv & Yuehong Lu & Yijie Zhou & Xuemei Liu & Changlong Wang & Yang Zhang & Zhijia Huang & Yanhong Sun, 2022. "Optimal Control of Energy Systems in Net-Zero Energy Buildings Considering Dynamic Costs: A Case Study of Zero Carbon Building in Hong Kong," Sustainability, MDPI, vol. 14(6), pages 1-25, March.
    5. Zhang, Guiqing & Tian, Chenlu & Li, Chengdong & Zhang, Jun Jason & Zuo, Wangda, 2020. "Accurate forecasting of building energy consumption via a novel ensembled deep learning method considering the cyclic feature," Energy, Elsevier, vol. 201(C).
    6. Zheng, Siqian & Jin, Xin & Huang, Gongsheng & Lai, Alvin CK., 2022. "Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system," Energy, Elsevier, vol. 248(C).
    7. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.
    8. Ziyu Duan & Seiyong Kim, 2023. "Progress in Research on Net-Zero-Carbon Cities: A Literature Review and Knowledge Framework," Energies, MDPI, vol. 16(17), pages 1-27, August.
    9. Huang, Pei & Sun, Yongjun & Lovati, Marco & Zhang, Xingxing, 2021. "Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    2. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    3. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    4. Seljom, Pernille & Lindberg, Karen Byskov & Tomasgard, Asgeir & Doorman, Gerard & Sartori, Igor, 2017. "The impact of Zero Energy Buildings on the Scandinavian energy system," Energy, Elsevier, vol. 118(C), pages 284-296.
    5. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
    6. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    7. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    8. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    9. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    10. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    11. Lu, Yuehong & Zhang, Xiao-Ping & Huang, Zhijia & Lu, Jinli & Wang, Dong, 2019. "Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings," Applied Energy, Elsevier, vol. 235(C), pages 106-116.
    12. Guarino, Francesco & Cassarà, Pietro & Longo, Sonia & Cellura, Maurizio & Ferro, Erina, 2015. "Load match optimisation of a residential building case study: A cross-entropy based electricity storage sizing algorithm," Applied Energy, Elsevier, vol. 154(C), pages 380-391.
    13. Feng, Wei & Zhang, Qianning & Ji, Hui & Wang, Ran & Zhou, Nan & Ye, Qing & Hao, Bin & Li, Yutong & Luo, Duo & Lau, Stephen Siu Yu, 2019. "A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Lopes, Rui Amaral & Magalhães, Pedro & Gouveia, João Pedro & Aelenei, Daniel & Lima, Celson & Martins, João, 2018. "A case study on the impact of nearly Zero-Energy Buildings on distribution transformer aging," Energy, Elsevier, vol. 157(C), pages 669-678.
    15. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).
    16. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    17. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    18. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    19. Hou, Juan & Li, Haoran & Nord, Natasa, 2022. "Nonlinear model predictive control for the space heating system of a university building in Norway," Energy, Elsevier, vol. 253(C).
    20. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:536-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.