Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.10.063
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohamed, M.R. & Leung, P.K. & Sulaiman, M.H., 2015. "Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system," Applied Energy, Elsevier, vol. 137(C), pages 402-412.
- Al-Yasiri, Mohammed & Park, Jonghyun, 2018. "A novel cell design of vanadium redox flow batteries for enhancing energy and power performance," Applied Energy, Elsevier, vol. 222(C), pages 530-539.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Zhu, X.B., 2016. "Performance of a vanadium redox flow battery with a VANADion membrane," Applied Energy, Elsevier, vol. 180(C), pages 353-359.
- Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
- Yang, Xiao-Guang & Ye, Qiang & Cheng, Ping & Zhao, Tim S., 2015. "Effects of the electric field on ion crossover in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 145(C), pages 306-319.
- Choi, Chanyong & Kim, Soohyun & Kim, Riyul & Choi, Yunsuk & Kim, Soowhan & Jung, Ho-young & Yang, Jung Hoon & Kim, Hee-Tak, 2017. "A review of vanadium electrolytes for vanadium redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 263-274.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
- Nurkhodzha Akbulaev & Tural Abdulhasanov, 2023. "Analyzing the Connection between Energy Prices and Cryptocurrency throughout the Pandemic Period," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 227-234, January.
- Liming Chen & Tao Liu & Yimin Zhang & Hong Liu & Muqing Ding & Dong Pan, 2022. "Mitigating Capacity Decay by Adding Carbohydrate in the Negative Electrolyte of Vanadium Redox Flow Battery," Energies, MDPI, vol. 15(7), pages 1-16, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.
- Jiang, H.R. & Shyy, W. & Wu, M.C. & Zhang, R.H. & Zhao, T.S., 2019. "A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 105-113.
- Chou, Yi-Sin & Hsu, Ning-Yih & Jeng, King-Tsai & Chen, Kuan-Hsiang & Yen, Shi-Chern, 2016. "A novel ultrasonic velocity sensing approach to monitoring state of charge of vanadium redox flow battery," Applied Energy, Elsevier, vol. 182(C), pages 253-259.
- Zou, Wen-Jiang & Kim, Young-Bae & Jung, Seunghun, 2024. "Capacity fade prediction for vanadium redox flow batteries during long-term operations," Applied Energy, Elsevier, vol. 356(C).
- Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
- Leung, P. & Martin, T. & Liras, M. & Berenguer, A.M. & Marcilla, R. & Shah, A. & An, L. & Anderson, M.A. & Palma, J., 2017. "Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries," Applied Energy, Elsevier, vol. 197(C), pages 318-326.
- Chen, Hui & Li, Xiangrong & Gao, Hai & Liu, Jianguo & Yan, Chuanwei & Tang, Ao, 2019. "Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay," Applied Energy, Elsevier, vol. 247(C), pages 13-23.
- Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Zhu, X.B., 2016. "Performance of a vanadium redox flow battery with a VANADion membrane," Applied Energy, Elsevier, vol. 180(C), pages 353-359.
- Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
- Guarnieri, Massimo & Trovò, Andrea & D'Anzi, Angelo & Alotto, Piergiorgio, 2018. "Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments," Applied Energy, Elsevier, vol. 230(C), pages 1425-1434.
- Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
- Jiang, H.R. & Wu, M.C. & Ren, Y.X. & Shyy, W. & Zhao, T.S., 2018. "Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries," Applied Energy, Elsevier, vol. 213(C), pages 366-374.
- Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
- López-Vizcaíno, Rubén & Mena, Esperanza & Millán, María & Rodrigo, Manuel A. & Lobato, Justo, 2017. "Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels," Renewable Energy, Elsevier, vol. 114(PB), pages 1123-1133.
- Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Lei, Y. & Zhang, B.W. & Zhang, Z.H. & Bai, B.F. & Zhao, T.S., 2018. "An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 215(C), pages 591-601.
- Kim, Jungmyung & Park, Heesung, 2017. "Experimental analysis of discharge characteristics in vanadium redox flow battery," Applied Energy, Elsevier, vol. 206(C), pages 451-457.
More about this item
Keywords
Anion exchange membrane; Redox flow battery; Donnan exclusion effect; Chemical stability; Functional groups;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:233-234:y:2019:i::p:622-643. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.