IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp281-288.html
   My bibliography  Save this article

A critical review of power quality standards and definitions applied to DC microgrids

Author

Listed:
  • Van den Broeck, Giel
  • Stuyts, Jeroen
  • Driesen, Johan

Abstract

As compared to AC microgrids, DC microgrids reduce the hardware complexity of converter-dominated power distribution in the presence of a high number of renewable energy sources, energy storage systems and energy efficient loads. Another frequently highlighted advantage is their resiliency and tolerance against AC grid disturbances resulting in improved overall power quality. However, with respect to power quality, the question arises whether existing international power quality standards and metrics remain applicable in DC microgrids or require adjustments. Therefore, this paper critically revises the definitions and power quality indicators specified in IEC 61000 and IEEE Std1159. The resulting review is essential to unambiguously define the responsibilities of the microgrid operators, customers and device manufacturers. Apart from that, causes and consequences of power quality issues in DC microgrids are discussed.

Suggested Citation

  • Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:281-288
    DOI: 10.1016/j.apenergy.2018.07.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capasso, Clemente & Veneri, Ottorino, 2015. "Experimental study of a DC charging station for full electric and plug in hybrid vehicles," Applied Energy, Elsevier, vol. 152(C), pages 131-142.
    2. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    3. Sanchez, Santiago & Molinas, Marta & Degano, Marco & Zanchetta, Pericle, 2014. "Stability evaluation of a DC micro-grid and future interconnection to an AC system," Renewable Energy, Elsevier, vol. 62(C), pages 649-656.
    4. Mahdavyfakhr, Mohammad & Rashidirad, Nasim & Hamzeh, Mohsen & Sheshyekani, Keyhan & Afjei, Ebrahim, 2017. "Stability improvement of DC grids involving a large number of parallel solar power optimizers: An active damping approach," Applied Energy, Elsevier, vol. 203(C), pages 364-372.
    5. Stephen Whaite & Brandon Grainger & Alexis Kwasinski, 2015. "Power Quality in DC Power Distribution Systems and Microgrids," Energies, MDPI, vol. 8(5), pages 1-22, May.
    6. Gerber, Daniel L. & Vossos, Vagelis & Feng, Wei & Marnay, Chris & Nordman, Bruce & Brown, Richard, 2018. "A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings," Applied Energy, Elsevier, vol. 210(C), pages 1167-1187.
    7. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    8. Veneri, Ottorino & Capasso, Clemente & Iannuzzi, Diego, 2016. "Experimental evaluation of DC charging architecture for fully-electrified low-power two-wheeler," Applied Energy, Elsevier, vol. 162(C), pages 1428-1438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerber, Daniel L. & Nordman, Bruce & Brown, Richard & Poon, Jason, 2023. "Cost analysis of distributed storage in AC and DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    2. Andrea Mariscotti, 2021. "Power Quality Phenomena, Standards, and Proposed Metrics for DC Grids," Energies, MDPI, vol. 14(20), pages 1-41, October.
    3. Deng Xu & Yong Long, 2019. "The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    4. Tobajas, Javier & Garcia-Torres, Felix & Roncero-Sánchez, Pedro & Vázquez, Javier & Bellatreche, Ladjel & Nieto, Emilio, 2022. "Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control," Applied Energy, Elsevier, vol. 306(PB).
    5. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    6. Helko E. van den Brom & Ronald van Leeuwen & Gerasimos Maroulis & Samad Shah & Laurens Mackay, 2023. "Power Quality Measurement Results for a Configurable Urban Low-Voltage DC Microgrid," Energies, MDPI, vol. 16(12), pages 1-18, June.
    7. Dash, P.K. & Prasad, Eluri N.V.D.V. & Jalli, Ravi Kumar & Mishra, S.P., 2022. "Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm," Applied Energy, Elsevier, vol. 309(C).
    8. Jiawei Yao & Yongming Zhang & Zhe Yan & Li Li, 2018. "A Group Approach of Smart Hybrid Poles with Renewable Energy, Street Lighting and EV Charging Based on DC Micro-Grid," Energies, MDPI, vol. 11(12), pages 1-17, December.
    9. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    10. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    11. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    12. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    13. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2023. "State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids," Energies, MDPI, vol. 16(7), pages 1-35, March.
    14. Soumya Ranjan Das & Prakash Kumar Ray & Arun Kumar Sahoo & Somula Ramasubbareddy & Thanikanti Sudhakar Babu & Nallapaneni Manoj Kumar & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement," Energies, MDPI, vol. 14(15), pages 1-32, July.
    15. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    16. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    17. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    18. Wang, Ruiting & Feng, Wei & Xue, Huijie & Gerber, Daniel & Li, Yutong & Hao, Bin & Wang, Yibo, 2021. "Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building," Applied Energy, Elsevier, vol. 303(C).
    19. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    20. Saeed Mian Qaisar, 2021. "Signal-piloted processing and machine learning based efficient power quality disturbances recognition," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.
    21. Jin, Yuhui & Wu, Xiao & Shen, Jiong, 2022. "Power-heat coordinated control of multiple energy system for off-grid energy supply using multi-timescale distributed predictive control," Energy, Elsevier, vol. 254(PB).
    22. Carlos Roldán-Porta & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Eduardo Quiles, 2019. "Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids," Sustainability, MDPI, vol. 11(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    3. Wang, Shuoqi & Lu, Languang & Han, Xuebing & Ouyang, Minggao & Feng, Xuning, 2020. "Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station," Applied Energy, Elsevier, vol. 259(C).
    4. Eskander, Monica M. & Silva, Carlos A., 2023. "Techno-economic and environmental comparative analysis for DC microgrids in households: Portuguese and French household case study," Applied Energy, Elsevier, vol. 349(C).
    5. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    6. Carlos Andrés Ramos-Paja & Juan David Bastidas-Rodríguez & Daniel González & Santiago Acevedo & Julián Peláez-Restrepo, 2017. "Design and Control of a Buck–Boost Charger-Discharger for DC-Bus Regulation in Microgrids," Energies, MDPI, vol. 10(11), pages 1-26, November.
    7. Patrik Ollas & Torbjörn Thiringer & Mattias Persson & Caroline Markusson, 2023. "Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage," Energies, MDPI, vol. 16(3), pages 1-21, January.
    8. Patrik Ollas & Torbjörn Thiringer & Mattias Persson, 2024. "Enhanced DC Building Distribution Performance Using a Modular Grid-Tied Converter Design," Energies, MDPI, vol. 17(13), pages 1-18, June.
    9. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    10. Fantauzzi, M. & Lauria, D. & Mottola, F. & Scalfati, A., 2017. "Sizing energy storage systems in DC networks: A general methodology based upon power losses minimization," Applied Energy, Elsevier, vol. 187(C), pages 862-872.
    11. Charalambous, Chrysanthos & Heracleous, Chryso & Michael, Aimilios & Efthymiou, Venizelos, 2023. "Hybrid AC-DC distribution system for building integrated photovoltaics and energy storage solutions for heating-cooling purposes. A case study of a historic building in Cyprus," Renewable Energy, Elsevier, vol. 216(C).
    12. Alharbi, Abdullah G. & Olabi, A.G. & Rezk, Hegazy & Fathy, Ahmed & Abdelkareem, Mohammad Ali, 2024. "Optimized energy management and control strategy of photovoltaic/PEM fuel cell/batteries/supercapacitors DC microgrid system," Energy, Elsevier, vol. 290(C).
    13. Liu, Xueying & Madlener, Reinhard, 2021. "Economic Benefits of Direct Current Technology for Private Households and Peer-to-Peer Trading in Germany," FCN Working Papers 7/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    14. Vossos, Vagelis & Gerber, Daniel & Bennani, Youness & Brown, Richard & Marnay, Chris, 2018. "Techno-economic analysis of DC power distribution in commercial buildings," Applied Energy, Elsevier, vol. 230(C), pages 663-678.
    15. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    16. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    17. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.
    18. Haojie Wang & Minxiao Han & Wenli Yan & Guopeng Zhao & Josep M. Guerrero, 2016. "A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid," Energies, MDPI, vol. 9(7), pages 1-12, July.
    19. Mohammad Shadnam Zarbil & Abolfazl Vahedi & Hossein Azizi Moghaddam & Pavel Aleksandrovich Khlyupin, 2022. "Design and Sizing of Electric Bus Flash Charger Based on a Flywheel Energy Storage System: A Case Study," Energies, MDPI, vol. 15(21), pages 1-23, October.
    20. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).

    More about this item

    Keywords

    Power quality; DC; Microgrid;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:281-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.