IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics0306261921016512.html
   My bibliography  Save this article

A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids

Author

Listed:
  • Hallemans, L.
  • Ravyts, S.
  • Govaerts, G.
  • Fekriasl, S.
  • Van Tichelen, P.
  • Driesen, J.

Abstract

Over the past years, there has been an increasing scientific interest in Low Voltage DC grids as an alternative to traditional Low Voltage AC grids, driven by the energy transition. However, fault detection and protection of LVDC microgrids still poses an important challenge for their breakthrough on a large scale. Due to the required speed and reliability of LVDC microgrid protection, an increasing amount of research is focussing on local, measurement-based protection algorithms. While several solutions for such a local, measurement-based fault protection algorithm have been proposed in literature, the design process of these algorithms is often unclear. As a result, it is often not straightforward to an LVDC grid designer how to tackle the design of an LVDC microgrid protection strategy. Furthermore, the framework within which the proposed algorithms are designed is often not discussed, as well as how well the algorithm will perform when the fault conditions deviate from this reference framework. Therefore, this paper presents a stepwise methodology for the design of fault protection strategies in LVDC microgrids with the aim of making this design process more straightforward and transparent. Furthermore, the proposed methodology allows to evaluate the robustness and boundaries of the designed protection strategy easily. The different steps of the methodology are discussed in detail and applied to a case study, followed by a sensitivity analysis of the developed protection algorithm to investigate its boundaries and improve its robustness.

Suggested Citation

  • Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016512
    DOI: 10.1016/j.apenergy.2021.118420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravyts, Simon & Moschner, Jens D. & Yordanov, Georgi H. & Van den Broeck, Giel & Dalla Vecchia, Mauricio & Manganiello, Patrizio & Meuris, Marc & Driesen, Johan, 2020. "Impact of photovoltaic technology and feeder voltage level on the efficiency of façade building-integrated photovoltaic systems," Applied Energy, Elsevier, vol. 269(C).
    2. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    3. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    4. KERAMIDAS Kimon & DIAZ VAZQUEZ Ana R. & WEITZEL Matthias & VANDYCK Toon & TAMBA Marie & TCHUNG-MING Stephane & SORIA RAMIREZ Antonio & KRAUSE Jette & VAN DINGENEN Rita & SO CHAI Qimin & FU Sha & WEN X, 2020. "Global Energy and Climate Outlook 2019: Electrification for the low-carbon transition," JRC Research Reports JRC119619, Joint Research Centre.
    5. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    6. Gerber, Daniel L. & Vossos, Vagelis & Feng, Wei & Marnay, Chris & Nordman, Bruce & Brown, Richard, 2018. "A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings," Applied Energy, Elsevier, vol. 210(C), pages 1167-1187.
    7. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ting & Zhang, Chunyan & Hao, Zhiguo & Monti, Antonello & Ponci, Ferdinanda, 2023. "Data-driven fault detection and isolation in DC microgrids without prior fault data: A transfer learning approach," Applied Energy, Elsevier, vol. 336(C).
    2. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2022. "Review of Methods for Addressing Challenging Issues in the Operation of Protection Devices in Microgrids with Voltages of up to 1 kV That Integrates Distributed Energy Resources," Energies, MDPI, vol. 15(23), pages 1-22, December.
    3. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    4. Jing Kang & Bin Hao & Yutong Li & Hui Lin & Zhifeng Xue, 2022. "The Application and Development of LVDC Buildings in China," Energies, MDPI, vol. 15(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    2. Gerber, Daniel L. & Nordman, Bruce & Brown, Richard & Poon, Jason, 2023. "Cost analysis of distributed storage in AC and DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    3. Emmers, Glenn & Van Acker, Tom & Driesen, Johan, 2024. "A semi-Markovian approach to evaluate the availability of low voltage direct current systems with integrated battery storage," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.
    5. Hasan Erteza Gelani & Faizan Dastgeer & Sayyad Ahmad Ali Shah & Faisal Saeed & Muhammad Hassan Yousuf & Hafiz Muhammad Waqas Afzal & Abdullah Bilal & Md. Shahariar Chowdhury & Kuaanan Techato & Sittip, 2022. "Comparative Efficiency and Sensitivity Analysis of AC and DC Power Distribution Paradigms for Residential Localities," Sustainability, MDPI, vol. 14(13), pages 1-52, July.
    6. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    7. Tri Ardriani & Pekik Argo Dahono & Arwindra Rizqiawan & Erna Garnia & Pungky Dwi Sastya & Ahmad Husnan Arofat & Muhammad Ridwan, 2021. "A DC Microgrid System for Powering Remote Areas," Energies, MDPI, vol. 14(2), pages 1-15, January.
    8. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    9. Carlos Roldán-Porta & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Eduardo Quiles, 2019. "Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids," Sustainability, MDPI, vol. 11(19), pages 1-22, October.
    10. Patrik Ollas & Torbjörn Thiringer & Mattias Persson & Caroline Markusson, 2023. "Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage," Energies, MDPI, vol. 16(3), pages 1-21, January.
    11. Patrik Ollas & Torbjörn Thiringer & Mattias Persson, 2024. "Enhanced DC Building Distribution Performance Using a Modular Grid-Tied Converter Design," Energies, MDPI, vol. 17(13), pages 1-18, June.
    12. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    13. Wang, Ruiting & Feng, Wei & Xue, Huijie & Gerber, Daniel & Li, Yutong & Hao, Bin & Wang, Yibo, 2021. "Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building," Applied Energy, Elsevier, vol. 303(C).
    14. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    15. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Arthur Santos & Gerald Duggan & Stephen Frank & Daniel Gerber & Daniel Zimmerle, 2021. "Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings," Energies, MDPI, vol. 14(18), pages 1-24, September.
    17. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    18. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Deng Xu & Yong Long, 2019. "The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    20. Fouad Boutros & Moustapha Doumiati & Jean-Christophe Olivier & Imad Mougharbel & Hadi Kanaan, 2024. "Optimal Placement of Multiple Sources in a Mesh-Type DC Microgrid Using Dijkstra’s Algorithm," Energies, MDPI, vol. 17(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.