IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8220-d856452.html
   My bibliography  Save this article

Comparative Efficiency and Sensitivity Analysis of AC and DC Power Distribution Paradigms for Residential Localities

Author

Listed:
  • Hasan Erteza Gelani

    (Department of Electrical Engineering, Faisalabad Campus, University of Engineering and Technology Lahore, Faisalabad 38000, Punjab, Pakistan)

  • Faizan Dastgeer

    (Department of Electrical Engineering, Faisalabad Campus, University of Engineering and Technology Lahore, Faisalabad 38000, Punjab, Pakistan)

  • Sayyad Ahmad Ali Shah

    (Department of Electrical Engineering, Faisalabad Campus, University of Engineering and Technology Lahore, Faisalabad 38000, Punjab, Pakistan)

  • Faisal Saeed

    (Department of Electrical Engineering, SBA School of Science and Engineering, Lahore University of Management Science (LUMS), Lahore 54792, Punjab, Pakistan)

  • Muhammad Hassan Yousuf

    (Department of Electrical Engineering, University of Engineering and Technology Lahore, Lahore 54890, Punjab, Pakistan)

  • Hafiz Muhammad Waqas Afzal

    (Department of Electrical Engineering, Faisalabad Campus, University of Engineering and Technology Lahore, Faisalabad 38000, Punjab, Pakistan)

  • Abdullah Bilal

    (Department of Electrical Engineering, Faisalabad Campus, University of Engineering and Technology Lahore, Faisalabad 38000, Punjab, Pakistan)

  • Md. Shahariar Chowdhury

    (Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
    Environmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand)

  • Kuaanan Techato

    (Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
    Environmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand)

  • Sittiporn Channumsin

    (Geo-Informatics and Space Technology Development Agency (GISTDA), Chonburi 20230, Thailand)

  • Nasim Ullah

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

Abstract

The new millennium has witnessed a pervasive shift of trend from AC to DC in the residential load sector. The shift is predominantly due to independent residential solar PV systems at rooftops and escalating electronic loads with better energy saving potential integrated with diminishing prices as well as commercial availability of DC-based appliances. Comprehensive sensitivity analysis considering the real load profile is missing in the present body of knowledge. In order to fill that gap, this paper is an attempt to include a comprehensive sensitivity analysis of the DC distribution system and its simulation-based comparison with its AC counterpart, considering the real load profile. The paper uses the Monte Carlo technique and probabilistic approach to add diversity in residential loads consumption to obtain an instantaneous load profile. Various possible scenarios such as variation of standard deviation from 5% to 20% of mean load value, PV capacity variation from 1000 W to 9000 W, and variation in power electronic converter (PEC) efficiencies are incorporated to make the system realistic as much as possible maintaining a fair comparison between both systems. The paper concludes with the baseline efficiency advantage of 2% to 3% during the day for the case of the DC distribution system as compared to the AC distribution system.

Suggested Citation

  • Hasan Erteza Gelani & Faizan Dastgeer & Sayyad Ahmad Ali Shah & Faisal Saeed & Muhammad Hassan Yousuf & Hafiz Muhammad Waqas Afzal & Abdullah Bilal & Md. Shahariar Chowdhury & Kuaanan Techato & Sittip, 2022. "Comparative Efficiency and Sensitivity Analysis of AC and DC Power Distribution Paradigms for Residential Localities," Sustainability, MDPI, vol. 14(13), pages 1-52, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8220-:d:856452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerber, Daniel L. & Vossos, Vagelis & Feng, Wei & Marnay, Chris & Nordman, Bruce & Brown, Richard, 2018. "A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings," Applied Energy, Elsevier, vol. 210(C), pages 1167-1187.
    2. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    3. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrik Ollas & Torbjörn Thiringer & Mattias Persson & Caroline Markusson, 2023. "Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage," Energies, MDPI, vol. 16(3), pages 1-21, January.
    2. Patrik Ollas & Torbjörn Thiringer & Mattias Persson, 2024. "Enhanced DC Building Distribution Performance Using a Modular Grid-Tied Converter Design," Energies, MDPI, vol. 17(13), pages 1-18, June.
    3. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    4. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    5. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    6. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    7. Keteng Jiang & Haibo Li & Xi Ye & Yi Lei & Keng-Weng Lao & Shuqing Zhang & Xianfa Hu, 2022. "Energy Efficiency Evaluation and Revenue Distribution of DC Power Distribution Systems in Nearly Zero Energy Buildings," Energies, MDPI, vol. 15(15), pages 1-23, August.
    8. Eskander, Monica M. & Silva, Carlos A., 2023. "Techno-economic and environmental comparative analysis for DC microgrids in households: Portuguese and French household case study," Applied Energy, Elsevier, vol. 349(C).
    9. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    10. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    11. Avpreet Othee & James Cale & Arthur Santos & Stephen Frank & Daniel Zimmerle & Omkar Ghatpande & Gerald Duggan & Daniel Gerber, 2023. "A Modeling Toolkit for Comparing AC and DC Electrical Distribution Efficiency in Buildings," Energies, MDPI, vol. 16(7), pages 1-46, March.
    12. Gerber, Daniel L. & Nordman, Bruce & Brown, Richard & Poon, Jason, 2023. "Cost analysis of distributed storage in AC and DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    13. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    14. Vagelis Vossos & Daniel L. Gerber & Melanie Gaillet-Tournier & Bruce Nordman & Richard Brown & Willy Bernal Heredia & Omkar Ghatpande & Avijit Saha & Gabe Arnold & Stephen M. Frank, 2022. "Adoption Pathways for DC Power Distribution in Buildings," Energies, MDPI, vol. 15(3), pages 1-23, January.
    15. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    16. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Liu, Xueying & Madlener, Reinhard, 2021. "Economic Benefits of Direct Current Technology for Private Households and Peer-to-Peer Trading in Germany," FCN Working Papers 7/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Arthur Santos & Gerald Duggan & Stephen Frank & Daniel Gerber & Daniel Zimmerle, 2021. "Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings," Energies, MDPI, vol. 14(18), pages 1-24, September.
    19. Vossos, Vagelis & Gerber, Daniel & Bennani, Youness & Brown, Richard & Marnay, Chris, 2018. "Techno-economic analysis of DC power distribution in commercial buildings," Applied Energy, Elsevier, vol. 230(C), pages 663-678.
    20. Olivia Graillet & Denis Genon-Catalot & Pierre-Olivier Lucas de Peslouan & Flavien Bernard & Frédéric Alicalapa & Laurent Lemaitre & Jean-Pierre Chabriat, 2024. "Optimizing Energy Consumption: A Case Study of LVDC Nanogrid Implementation in Tertiary Buildings on La Réunion Island," Energies, MDPI, vol. 17(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8220-:d:856452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.