IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp1428-1438.html
   My bibliography  Save this article

Experimental evaluation of DC charging architecture for fully-electrified low-power two-wheeler

Author

Listed:
  • Veneri, Ottorino
  • Capasso, Clemente
  • Iannuzzi, Diego

Abstract

This paper is aimed to present an experimental criterion that allows researchers and designers to evaluate the performance of DC micro-grids dedicated to charging operations of full EV. The laboratory methodology is explained through tests on a demonstrator of power architecture, specifically designed as simplified case study of a DC charging station for fully-electrified low-power two-wheeler, such as: electric scooters and bikes. This experimental prototype is composed by a 20kW AC/DC bidirectional grid-tied converter, which realizes the DC conversion stage, and two DC/DC power converters, interconnected with the micro-grid through a DC bus. The power architecture provides on one hand the charging operations of electric two-wheeler battery packs and on the other hand the integration of the micro-grid with an ES buffer, which has the main function of supporting the main grid while an electric vehicle is on charge. The performance of the considered architecture is characterized and analyzed in different operative conditions, through a specific management of the energy fluxes. The laboratory tests evaluate efficiency, charging times and impact on the main grid, with specific reference to the DC charging operations of electric scooters. The obtained experimental results show the advantages of adopting the DC buffer architecture, compared with an AC commercial battery charger, considered as reference in this work. Finally, the numerical data of this paper, related to the single power components and to the experimental results evaluated for the whole demonstrator, effectively support the lack of knowledge in the literature about charging stations for EVs. In fact, these pieces of information, based on experimental tests, are expected to support the building of simulation models and the identification of the best energy management and control strategies to be adopted in a smart-grid scenario, characterized by distributed generation systems including renewable energy sources.

Suggested Citation

  • Veneri, Ottorino & Capasso, Clemente & Iannuzzi, Diego, 2016. "Experimental evaluation of DC charging architecture for fully-electrified low-power two-wheeler," Applied Energy, Elsevier, vol. 162(C), pages 1428-1438.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1428-1438
    DOI: 10.1016/j.apenergy.2015.03.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capasso, Clemente & Veneri, Ottorino, 2014. "Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles," Applied Energy, Elsevier, vol. 136(C), pages 921-930.
    2. Andersen, Jørgen Juel & Aslaksen, Silje, 2013. "Oil and political survival," Journal of Development Economics, Elsevier, vol. 100(1), pages 89-106.
    3. Shao, Shuai & Yang, Lili, 2014. "Natural resource dependence, human capital accumulation, and economic growth: A combined explanation for the resource curse and the resource blessing," Energy Policy, Elsevier, vol. 74(C), pages 632-642.
    4. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    5. Boynuegri, A.R. & Uzunoglu, M. & Erdinc, O. & Gokalp, E., 2014. "A new perspective in grid connection of electric vehicles: Different operating modes for elimination of energy quality problems," Applied Energy, Elsevier, vol. 132(C), pages 435-451.
    6. Ren, Guizhou & Ma, Guoqing & Cong, Ning, 2015. "Review of electrical energy storage system for vehicular applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 225-236.
    7. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    8. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    9. Nansai, Keisuke & Tohno, Susumu & Kono, Motoki & Kasahara, Mikio, 2002. "Effects of electric vehicles (EV) on environmental loads with consideration of regional differences of electric power generation and charging characteristic of EV users in Japan," Applied Energy, Elsevier, vol. 71(2), pages 111-125, February.
    10. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    2. Haojie Wang & Minxiao Han & Wenli Yan & Guopeng Zhao & Josep M. Guerrero, 2016. "A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid," Energies, MDPI, vol. 9(7), pages 1-12, July.
    3. Farmann, Alexander & Sauer, Dirk Uwe, 2018. "Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 225(C), pages 1102-1122.
    4. Mohammad Shadnam Zarbil & Abolfazl Vahedi & Hossein Azizi Moghaddam & Pavel Aleksandrovich Khlyupin, 2022. "Design and Sizing of Electric Bus Flash Charger Based on a Flywheel Energy Storage System: A Case Study," Energies, MDPI, vol. 15(21), pages 1-23, October.
    5. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    6. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    7. Zhou, Yanting & Wang, Yanan & Wang, Kai & Kang, Le & Peng, Fei & Wang, Licheng & Pang, Jinbo, 2020. "Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors," Applied Energy, Elsevier, vol. 260(C).
    8. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    9. Hung, Nguyen Ba & Sung, Jaewon & Lim, Ocktaeck, 2018. "A simulation and experimental study of operating performance of an electric bicycle integrated with a semi-automatic transmission," Applied Energy, Elsevier, vol. 221(C), pages 319-333.
    10. Zheng Wang & Bochen Liu & Yue Zhang & Ming Cheng & Kai Chu & Liang Xu, 2016. "The Chaotic-Based Control of Three-Port Isolated Bidirectional DC/DC Converters for Electric and Hybrid Vehicles," Energies, MDPI, vol. 9(2), pages 1-19, January.
    11. Wang, Shuoqi & Lu, Languang & Han, Xuebing & Ouyang, Minggao & Feng, Xuning, 2020. "Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station," Applied Energy, Elsevier, vol. 259(C).
    12. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    13. Carlos Andrés Ramos-Paja & Juan David Bastidas-Rodríguez & Daniel González & Santiago Acevedo & Julián Peláez-Restrepo, 2017. "Design and Control of a Buck–Boost Charger-Discharger for DC-Bus Regulation in Microgrids," Energies, MDPI, vol. 10(11), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capasso, Clemente & Veneri, Ottorino, 2015. "Experimental study of a DC charging station for full electric and plug in hybrid vehicles," Applied Energy, Elsevier, vol. 152(C), pages 131-142.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    4. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    5. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    6. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    7. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    8. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    9. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    12. Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Li, Guangmin, 2020. "Comparison of semi-active hybrid battery system configurations for electric taxis application," Applied Energy, Elsevier, vol. 259(C).
    13. José Luis Sampietro & Vicenç Puig & Ramon Costa-Castelló, 2019. "Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries," Energies, MDPI, vol. 12(5), pages 1-27, March.
    14. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    15. Qiao Zhang & Weiwen Deng, 2016. "An Adaptive Energy Management System for Electric Vehicles Based on Driving Cycle Identification and Wavelet Transform," Energies, MDPI, vol. 9(5), pages 1-24, May.
    16. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    17. Vinicius Braga Ferreira da Costa & Gabriel Nasser Doyle de Doile & Gustavo Troiano & Bruno Henriques Dias & Benedito Donizeti Bonatto & Tiago Soares & Walmir de Freitas Filho, 2022. "Electricity Markets in the Context of Distributed Energy Resources and Demand Response Programs: Main Developments and Challenges Based on a Systematic Literature Review," Energies, MDPI, vol. 15(20), pages 1-43, October.
    18. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    19. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1428-1438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.