IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp145-159.html
   My bibliography  Save this article

An integrated diesel fuel processing system with thermal start-up for fuel cells

Author

Listed:
  • Samsun, Remzi Can
  • Prawitz, Matthias
  • Tschauder, Andreas
  • Pasel, Joachim
  • Pfeifer, Peter
  • Peters, Ralf
  • Stolten, Detlef

Abstract

A diesel fuel processor for high temperature polymer electrolyte fuel cells in the 5 kWe power class was developed and tested. Emphasis was placed on a quick and sustainable start-up. Furthermore, operational conditions were identified that would achieve the desired reformate quality for the fuel cell anode. A thermal start-up strategy using a commercial diesel burner was developed and further optimized, resulting in a hybrid strategy with the help of a glow plug. With this strategy, self-sustaining operation of the fuel processor at full load was achieved in 27 min and the resulting reformate was of sufficient quality to operate the fuel cell in 31 min. The experimental plan includes operation periods of between 4 and 24 h with start/stop/regeneration cycles representing the daily operation of an auxiliary power unit at maximum load. With all fuels used, the target carbon monoxide concentration of 1% at the anode inlet (wet reformate) was achieved. Significant deviations from the design parameters were necessary to demonstrate a stable system performance with desulfurized Jet A-1 and to achieve the target carbon monoxide concentration with premium diesel. These results bring diesel fuel processing for auxiliary power units closer to real application, offering experimentally-validated solutions for start-up and stable operation under realistic conditions with different fuels on a systems level.

Suggested Citation

  • Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Pasel, Joachim & Pfeifer, Peter & Peters, Ralf & Stolten, Detlef, 2018. "An integrated diesel fuel processing system with thermal start-up for fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 145-159.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:145-159
    DOI: 10.1016/j.apenergy.2018.05.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peters, R. & Samsun, R.C., 2013. "Evaluation of multifunctional fuel cell systems in aviation using a multistep process analysis methodology," Applied Energy, Elsevier, vol. 111(C), pages 46-63.
    2. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2017. "High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming," Applied Energy, Elsevier, vol. 195(C), pages 503-522.
    3. Samsun, Remzi Can & Pasel, Joachim & Janßen, Holger & Lehnert, Werner & Peters, Ralf & Stolten, Detlef, 2014. "Design and test of a 5kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene," Applied Energy, Elsevier, vol. 114(C), pages 238-249.
    4. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    5. Krekel, Daniel & Samsun, Remzi Can & Pasel, Joachim & Prawitz, Matthias & Peters, Ralf & Stolten, Detlef, 2016. "Operating strategies for fuel processing systems with a focus on water–gas shift reactor stability," Applied Energy, Elsevier, vol. 164(C), pages 540-552.
    6. Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
    7. Xu, Xinhai & Li, Peiwen & Shen, Yuesong, 2013. "Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review," Applied Energy, Elsevier, vol. 108(C), pages 202-217.
    8. Tribioli, Laura & Cozzolino, Raffaello & Chiappini, Daniele & Iora, Paolo, 2016. "Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing," Applied Energy, Elsevier, vol. 184(C), pages 140-154.
    9. Pregelj, Boštjan & Vrečko, Darko & Petrovčič, Janko & Jovan, Vladimir & Dolanc, Gregor, 2015. "A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application," Applied Energy, Elsevier, vol. 137(C), pages 64-76.
    10. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    11. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2017. "Advances in autothermal reformer design," Applied Energy, Elsevier, vol. 198(C), pages 88-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Meißner, Jan & Pasel, Joachim & Peters, Ralf, 2020. "Reforming of diesel and jet fuel for fuel cells on a systems level: Steady-state and transient operation," Applied Energy, Elsevier, vol. 279(C).
    2. Ralf Peters & Janos Lucian Breuer & Maximilian Decker & Thomas Grube & Martin Robinius & Remzi Can Samsun & Detlef Stolten, 2021. "Future Power Train Solutions for Long-Haul Trucks," Sustainability, MDPI, vol. 13(4), pages 1-57, February.
    3. Ahmed A. Alharbi & Naif B. Alqahtani & Abdullah M. Alkhedhair & Abdullah J. Alabduly & Ahmad A. Almaleki & Mustafa H. Almadih & Miqad S. Albishi & Abdullah A. Almayeef, 2022. "A Developed Plasmatron Design to Enhance Production of Hydrogen in Synthesis Gas Produced by a Fuel Reformer System," Energies, MDPI, vol. 15(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Meißner, Jan & Pasel, Joachim & Peters, Ralf, 2020. "Reforming of diesel and jet fuel for fuel cells on a systems level: Steady-state and transient operation," Applied Energy, Elsevier, vol. 279(C).
    2. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2017. "Advances in autothermal reformer design," Applied Energy, Elsevier, vol. 198(C), pages 88-98.
    3. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    4. Purnima, P. & Jayanti, S., 2017. "Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation," Applied Energy, Elsevier, vol. 199(C), pages 169-179.
    5. Tribioli, Laura & Cozzolino, Raffaello & Chiappini, Daniele & Iora, Paolo, 2016. "Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing," Applied Energy, Elsevier, vol. 184(C), pages 140-154.
    6. Han, Gwangwoo & Lee, Sangho & Bae, Joongmyeon, 2015. "Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments," Applied Energy, Elsevier, vol. 156(C), pages 99-106.
    7. Laura Tribioli & Raffaello Cozzolino & Daniele Chiappini, 2017. "Technical Assessment of Different Operating Conditions of an On-Board Autothermal Reformer for Fuel Cell Vehicles," Energies, MDPI, vol. 10(7), pages 1-17, June.
    8. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    9. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2017. "Effects of reformed fuel composition in “single” fuel reactivity controlled compression ignition combustion," Applied Energy, Elsevier, vol. 208(C), pages 1-11.
    10. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2015. "A novel reactor type for autothermal reforming of diesel fuel and kerosene," Applied Energy, Elsevier, vol. 150(C), pages 176-184.
    11. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Krekel, Daniel & Samsun, Remzi Can & Pasel, Joachim & Prawitz, Matthias & Peters, Ralf & Stolten, Detlef, 2016. "Operating strategies for fuel processing systems with a focus on water–gas shift reactor stability," Applied Energy, Elsevier, vol. 164(C), pages 540-552.
    13. Alessandro Serpi & Mario Porru, 2019. "Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 12(22), pages 1-21, November.
    14. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    15. Samsun, Remzi Can & Pasel, Joachim & Janßen, Holger & Lehnert, Werner & Peters, Ralf & Stolten, Detlef, 2014. "Design and test of a 5kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene," Applied Energy, Elsevier, vol. 114(C), pages 238-249.
    16. Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
    17. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    18. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    19. Thomas, Sobi & Vang, Jakob Rabjerg & Araya, Samuel Simon & Kær, Søren Knudsen, 2017. "Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions," Applied Energy, Elsevier, vol. 192(C), pages 422-436.
    20. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:145-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.