IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics030626192401211x.html
   My bibliography  Save this article

Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems

Author

Listed:
  • Liang, Zheng
  • Liang, Yingzong
  • Luo, Xianglong
  • Yu, Zhibin
  • Chen, Jianyong
  • Chen, Ying

Abstract

This study introduces a novel “methanol-solar-to-X" hybrid energy system based on proton exchange membrane fuel cells (PEMFC), a promising approach for distributed energy generation. By integrating renewable energy into the methanol-driven PEMFC system, we aim to minimize annual costs and reduce environmental impact. Traditional methods, such as “solar-to-singular energy conversion”, limit the effective coupling of solar and methanol energy. To address this, we developed an enhanced heat integration module within a multi-objective mixed-integer nonlinear programming framework to optimize solar integration sites and improve system performance. A numerical model was implemented in GAMS for a 1000-kWe combined cooling, heating, and power (CCHP) system, evaluating energy, economic, and environmental outcomes. Results indicate significant enhancements with the SCCHP-TS system, achieving a 7.03% reduction in the levelized cost of electricity (LCOE) and a 10.95% decrease in carbon mass specific emissions (MSE) compared to the conventional methanol-fueled methanol-reforming PEMFC-based system. Additionally, comprehensive solar integration across the site yielded improvements of at least 4.30% in energy efficiency, 4.23% in LCOE, and 4.81% in MSE relative to component-specific solar designs.

Suggested Citation

  • Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Yu, Zhibin & Chen, Jianyong & Chen, Ying, 2024. "Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s030626192401211x
    DOI: 10.1016/j.apenergy.2024.123828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401211X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lan, Yuncheng & Lu, Junhui & Mu, Lianbo & Wang, Suilin & Zhai, Huixing, 2023. "Waste heat recovery from exhausted gas of a proton exchange membrane fuel cell to produce hydrogen using thermoelectric generator," Applied Energy, Elsevier, vol. 334(C).
    2. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    3. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.
    4. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    5. Wu, Wei & Zhai, Chong & Sui, Zengguang & Sui, Yunren & Luo, Xianglong, 2021. "Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 560-573.
    6. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    7. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    8. Zhao, Junjie & Chang, Huawei & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers," Applied Energy, Elsevier, vol. 309(C).
    9. Song, Chunfeng & Liu, Qingling & Ji, Na & Kansha, Yasuki & Tsutsumi, Atsushi, 2015. "Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration," Applied Energy, Elsevier, vol. 154(C), pages 392-401.
    10. Yuan, Yu & Bai, Zhang & Liu, Qibin & Hu, Wenxin & Zheng, Bo, 2021. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Route of enhancing the operation flexibility," Applied Energy, Elsevier, vol. 301(C).
    11. Calise, Francesco & Figaj, Rafal Damian & Massarotti, Nicola & Mauro, Alessandro & Vanoli, Laura, 2017. "Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis," Applied Energy, Elsevier, vol. 192(C), pages 530-542.
    12. Minutillo, Mariagiovanna & Perna, Alessandra & Sorce, Alessandro, 2020. "Green hydrogen production plants via biogas steam and autothermal reforming processes: energy and exergy analyses," Applied Energy, Elsevier, vol. 277(C).
    13. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Singer, Gerald & Köll, Rebekka & Aichhorn, Lukas & Pertl, Patrick & Trattner, Alexander, 2023. "Utilizing hydrogen pressure energy by expansion machines – PEM fuel cells in mobile and other potential applications," Applied Energy, Elsevier, vol. 343(C).
    15. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    16. Dong, Yuchen & Zheng, Weibo & Cao, Xiaoyu & Sun, Xunhang & He, Zhengwen, 2023. "Co-planning of hydrogen-based microgrids and fuel-cell bus operation centers under low-carbon and resilience considerations," Applied Energy, Elsevier, vol. 336(C).
    17. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hanbin & Luo, Chunhuan & Zhang, Rudan & Li, Yongsheng & Yang, Changchang & Li, Zexiang & Li, Jianhao & Li, Na & Li, Yiqun & Su, Qingquan, 2023. "Experiment and performance evaluation of an integrated low-temperature proton exchange membrane fuel cell system with an absorption chiller," Renewable Energy, Elsevier, vol. 215(C).
    2. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    3. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    4. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    5. Wang, Xiaomeng & Duan, Liqiang & Zheng, Nan, 2024. "Thermodynamic and economic analysis of a new CCHP system with active solar energy storage and decoupling of power and cooling outputs," Energy, Elsevier, vol. 307(C).
    6. Zhao, Junjie & Chang, Huawei & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers," Applied Energy, Elsevier, vol. 309(C).
    7. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Wang, Shuoshuo & Tuo, Yongxiao & Zhu, Xiaoli & Li, Fulai & Bai, Zhang & Gu, Yucheng, 2024. "Systematic assessment for an integrated hydrogen approach towards the cross-regional application considering solar thermochemical and methanol carrier11The short version of the paper was presented at ," Applied Energy, Elsevier, vol. 370(C).
    10. Han, Yuan & Zhang, Houcheng, 2022. "Potentiality of elastocaloric cooling system for high-temperature proton exchange membrane fuel cell waste heat harvesting," Renewable Energy, Elsevier, vol. 200(C), pages 1166-1179.
    11. Ehteshami, S. Mohsen Mousavi & Vignesh, S. & Rasheed, R.K.A. & Chan, S.H., 2016. "Numerical investigations on ethanol electrolysis for production of pure hydrogen from renewable sources," Applied Energy, Elsevier, vol. 170(C), pages 388-393.
    12. Ma, Zhenxi & Cai, Liang & Sun, Li & Zhang, Xiao & Zhang, Xiaosong, 2024. "Thermodynamics and flexibility assessment on integrated high-temperature PEMFC and double-effect absorption heating/cooling cogeneration cycle," Energy, Elsevier, vol. 290(C).
    13. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    14. Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
    15. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    16. Chen, Yuzhu & Guo, Weimin & Zhang, Tianhu & Lund, Peter D. & Wang, Jun & Yang, Kun, 2024. "Carbon and economic prices optimization of a solar-gas coupling energy system with a modified non-dominated sorting genetic algorithm considering operating sequences of water-cooled chillers," Energy, Elsevier, vol. 301(C).
    17. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    18. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    19. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    20. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s030626192401211x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.