IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v195y2017icp503-522.html
   My bibliography  Save this article

High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming

Author

Listed:
  • D.F. Chuahy, Flavio
  • Kokjohn, Sage L.

Abstract

A computational system optimization was conducted to explore the potential benefits of diesel reforming in dual-fuel combustion strategies. A comprehensive CFD model, validated against syngas (50/50 H2/CO by mole) metal engine experiments, was used to simulate the engine combustion process. The engine CFD solver was coupled with an equilibrium solver for the reformer process and three different reforming processes were investigated: Partial oxidation, steam reforming, and autothermal reforming. A system level approach was used to evaluate the impact of thermochemical recovery of exhaust energy and reformer losses. A design of experiments of simulations was conducted to explore the combustion system design space and a genetic algorithm was used to search the resulting response surface and find the optimal operating conditions. It was found that fuel reforming can increase engine net indicated efficiencies by as much as 9% due to a shorter combustion duration and reduction in heat transfer losses. The partial oxidation reforming system resulted in the lowest system efficiencies at 44% due to its exothermic nature, while steam reforming and autothermal reforming were able to achieve over 48% system efficiency, an improvement in global efficiency of 8% compared to a diesel baseline due to exhaust heat recovery.

Suggested Citation

  • D.F. Chuahy, Flavio & Kokjohn, Sage L., 2017. "High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming," Applied Energy, Elsevier, vol. 195(C), pages 503-522.
  • Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:503-522
    DOI: 10.1016/j.apenergy.2017.03.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917302933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stepanov, V.S., 1995. "Chemical energies and exergies of fuels," Energy, Elsevier, vol. 20(3), pages 235-242.
    2. Caton, Jerald A, 2000. "On the destruction of availability (exergy) due to combustion processes — with specific application to internal-combustion engines," Energy, Elsevier, vol. 25(11), pages 1097-1117.
    3. Li, You-Rong & Wang, Jian-Ning & Du, Mei-Tang, 2012. "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle," Energy, Elsevier, vol. 42(1), pages 503-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2017. "Effects of reformed fuel composition in “single” fuel reactivity controlled compression ignition combustion," Applied Energy, Elsevier, vol. 208(C), pages 1-11.
    2. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Pasel, Joachim & Pfeifer, Peter & Peters, Ralf & Stolten, Detlef, 2018. "An integrated diesel fuel processing system with thermal start-up for fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 145-159.
    3. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    4. Pashchenko, Dmitry, 2019. "Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study," Energy, Elsevier, vol. 185(C), pages 573-584.
    5. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    6. Di Blasio, G. & Belgiorno, G. & Beatrice, C., 2017. "Effects on performances, emissions and particle size distributions of a dual fuel (methane-diesel) light-duty engine varying the compression ratio," Applied Energy, Elsevier, vol. 204(C), pages 726-740.
    7. Eyal, Amnon & Tartakovsky, Leonid, 2020. "Second-law analysis of the reforming-controlled compression ignition," Applied Energy, Elsevier, vol. 263(C).
    8. Ipsakis, Dimitris & Ouzounidou, Martha & Papadopoulou, Simira & Seferlis, Panos & Voutetakis, Spyros, 2017. "Dynamic modeling and control analysis of a methanol autothermal reforming and PEM fuel cell power system," Applied Energy, Elsevier, vol. 208(C), pages 703-718.
    9. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Meißner, Jan & Pasel, Joachim & Peters, Ralf, 2020. "Reforming of diesel and jet fuel for fuel cells on a systems level: Steady-state and transient operation," Applied Energy, Elsevier, vol. 279(C).
    10. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    11. Li, Bo & Zhong, Fei & Wang, Ruixin & Jiang, Yankun & Chen, Yexin, 2024. "Experimental and numerical study on a SI engine fueled with gasohol and dissociated methanol gas blends at lean conditions," Energy, Elsevier, vol. 292(C).
    12. Navid Kousheshi & Mortaza Yari & Amin Paykani & Ali Saberi Mehr & German F. de la Fuente, 2020. "Effect of Syngas Composition on the Combustion and Emissions Characteristics of a Syngas/Diesel RCCI Engine," Energies, MDPI, vol. 13(1), pages 1-19, January.
    13. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2018. "Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions," Applied Energy, Elsevier, vol. 229(C), pages 375-388.
    14. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
    15. Sunita Pokharel & Mohsen Ayoobi & V’yacheslav Akkerman, 2021. "Computational Analysis of Premixed Syngas/Air Combustion in Micro-channels: Impacts of Flow Rate and Fuel Composition," Energies, MDPI, vol. 14(14), pages 1-19, July.
    16. Atakan, Burak & Kaiser, Sebastian A. & Herzler, Jürgen & Porras, Sylvia & Banke, Kai & Deutschmann, Olaf & Kasper, Tina & Fikri, Mustapha & Schießl, Robert & Schröder, Dominik & Rudolph, Charlotte & K, 2020. "Flexible energy conversion and storage via high-temperature gas-phase reactions: The piston engine as a polygeneration reactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    18. Zhu, Yizi & He, Zhixia & Xuan, Tiemin & Shao, Zhuang, 2024. "An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines," Applied Energy, Elsevier, vol. 362(C).
    19. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    2. Feng, Hongqing & Liu, Daojian & Yang, Xiaoxi & An, Ming & Zhang, Weiwen & Zhang, Xiaodong, 2016. "Availability analysis of using iso-octane/n-butanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 96(PA), pages 281-294.
    3. Bueno, Andre Valente & Velásquez, José Antonio & Milanez, Luiz Fernando, 2011. "Heat release and engine performance effects of soybean oil ethyl ester blending into diesel fuel," Energy, Elsevier, vol. 36(6), pages 3907-3916.
    4. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    5. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    6. Anahita Moharamian & Saeed Soltani & Faramarz Ranjbar & Mortaza Yari & Marc A Rosen, 2017. "Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit," Energy & Environment, , vol. 28(7), pages 725-743, November.
    7. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    8. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
    9. Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.
    10. Liu, Jian & Xu, Yantao & Zhang, Yaning & Shuai, Yong & Li, Bingxi, 2022. "Multi-objective optimization of low temperature cooling water organic Rankine cycle using dual pinch point temperature difference technologies," Energy, Elsevier, vol. 240(C).
    11. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    12. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    13. Saxena, Samveg & Shah, Nihar & Bedoya, Ivan & Phadke, Amol, 2014. "Understanding optimal engine operating strategies for gasoline-fueled HCCI engines using crank-angle resolved exergy analysis," Applied Energy, Elsevier, vol. 114(C), pages 155-163.
    14. Xiao Chen & Yongquan Wen & Nanyang Li, 2016. "Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China," Sustainability, MDPI, vol. 8(10), pages 1-14, September.
    15. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    16. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2014. "Thermodynamics of premixed combustion in a heat recirculating micro combustor," Energy, Elsevier, vol. 68(C), pages 510-518.
    17. Gao, P. & Wang, L.W. & Wang, R.Z. & Jiang, L. & Zhou, Z.S., 2015. "Experimental investigation on a small pumpless ORC (organic rankine cycle) system driven by the low temperature heat source," Energy, Elsevier, vol. 91(C), pages 324-333.
    18. Kim, Sunjin & Cho, Yeonjoo & Kim, Min Soo & Kim, Minsung, 2018. "Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators," Energy, Elsevier, vol. 147(C), pages 1216-1226.
    19. Wang, Jiansheng & Diao, Mengzhen & Yue, Kaihong, 2017. "Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method," Energy, Elsevier, vol. 141(C), pages 97-107.
    20. Tian, Zhen & Gan, Wanlong & Qi, Zhixin & Tian, Molin & Gao, Wenzhong, 2022. "Experimental study of organic Rankine cycle with three-fluid recuperator for cryogenic cold energy recovery," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:503-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.