IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v224y2018icp280-288.html
   My bibliography  Save this article

Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming

Author

Listed:
  • Lei, Libin
  • Keels, Jayson M.
  • Tao, Zetian
  • Zhang, Jihao
  • Chen, Fanglin

Abstract

Operating proton conducting solid oxide fuel cells (H-SOFCs) with hydrocarbon as fuel remains a challenge because of the instability of the anode and electrolyte materials in a CO2/H2O-containing atmosphere and the catalytic activity and coking resistance of the anode for direct oxidation of hydrocarbons. Therefore, in this study, the steam reforming of methane (SRM, an endothermic process) is integrated into the H-SOFCs (fuel cell process, an exothermic process) for internally converting hydrocarbon to hydrogen and increasing energy efficiency of H-SOFCs. Moreover, a proton-conducting zirconate oxide (BaZr0.8Y0.2O3, BZY), which is stable in a CO2/H2O-containing atmosphere, is applied as an electrolyte and anode material of H-SOFCs. The operation of BZY-based H-SOFCs with internal SRM is assessed by thermodynamic calculation and experiments for the first time. The catalytic activity and coking resistance of the Ni-BZY anode for SRM are investigated thermodynamically and experimentally. The results demonstrate that the Ni-BZY anode possesses reasonable catalytic activity as well as good coking resistance for SRM at a temperature as low as 550 °C. Then, the electrochemical performance and durability of H-SOFCs operated with internal SRM are comprehensively studied from 550 °C to 700 °C.

Suggested Citation

  • Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
  • Handle: RePEc:eee:appene:v:224:y:2018:i:c:p:280-288
    DOI: 10.1016/j.apenergy.2018.04.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918306226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Yong & Tian, Wenjuan & Chen, Huili & Shi, Huangang & Yang, Binbin & Li, Chao & Shao, Zongping & Zhu, Zhenping & Li, Si-Dian, 2015. "In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance," Applied Energy, Elsevier, vol. 141(C), pages 200-208.
    2. Menon, Vikram & Banerjee, Aayan & Dailly, Julian & Deutschmann, Olaf, 2015. "Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming," Applied Energy, Elsevier, vol. 149(C), pages 161-175.
    3. Qu, Jifa & Wang, Wei & Chen, Yubo & Deng, Xiang & Shao, Zongping, 2016. "Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures," Applied Energy, Elsevier, vol. 164(C), pages 563-571.
    4. Qu, Jifa & Wang, Wei & Chen, Yubo & Wang, Feng & Ran, Ran & Shao, Zongping, 2015. "Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes," Applied Energy, Elsevier, vol. 148(C), pages 1-9.
    5. Steil, M.C. & Nobrega, S.D. & Georges, S. & Gelin, P. & Uhlenbruck, S. & Fonseca, F.C., 2017. "Durable direct ethanol anode-supported solid oxide fuel cell," Applied Energy, Elsevier, vol. 199(C), pages 180-186.
    6. Duan, Nan-Qi & Tan, Yuan & Yan, Dong & Jia, Lichao & Chi, Bo & Pu, Jian & Li, Jian, 2016. "Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode," Applied Energy, Elsevier, vol. 165(C), pages 983-989.
    7. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    8. Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    2. Junjie Chen & Baofang Liu & Xuhui Gao & Deguang Xu, 2018. "RETRACTED: Production of Hydrogen by Methane Steam Reforming Coupled with Catalytic Combustion in Integrated Microchannel Reactors," Energies, MDPI, vol. 11(8), pages 1, August.
    3. Zhang, Yidan & Zhu, Ankang & Guo, Youmin & Wang, Chunchang & Ni, Meng & Yu, Hao & Zhang, Chuanhui & Shao, Zongping, 2019. "Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 344-350.
    4. Fan Liu & Chuancheng Duan, 2021. "Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells," Sustainability, MDPI, vol. 13(9), pages 1-9, April.
    5. Dai, Huidong & Besser, R.S., 2022. "Understanding hydrogen sulfide impact on a portable, commercial, propane-powered solid-oxide fuel cell," Applied Energy, Elsevier, vol. 307(C).
    6. Lei, Libin & Mo, Yingyu & Huang, Yue & Qiu, Ruiming & Tian, Zhipeng & Wang, Junyao & Liu, Jianping & Chen, Ying & Zhang, Jihao & Tao, Zetian & Liang, Bo & Wang, Chao, 2023. "Revealing and quantifying the role of oxygen-ionic current in proton-conducting solid oxide fuel cells: A modeling study," Energy, Elsevier, vol. 276(C).
    7. Berre Kumuk & Nisa Nur Atak & Battal Dogan & Salih Ozer & Pinar Demircioglu & Ismail Bogrekci, 2024. "Numerical and Thermodynamic Analysis of the Effect of Operating Temperature in Methane-Fueled SOFC," Energies, MDPI, vol. 17(11), pages 1-17, May.
    8. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    9. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Ben-Mansour, R. & Haque, M.A. & Habib, M.A. & Paglieri, S. & Harale, A. & Mokheimer, E.M.A., 2023. "Effect of temperature and heat flux boundary conditions on hydrogen production in membrane-integrated steam-methane reformer," Applied Energy, Elsevier, vol. 346(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    2. Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
    3. Lei, Libin & Wang, Yao & Fang, Shumin & Ren, Cong & Liu, Tong & Chen, Fanglin, 2016. "Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis," Applied Energy, Elsevier, vol. 173(C), pages 52-58.
    4. Xu, Han & Dang, Zheng, 2016. "Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming," Applied Energy, Elsevier, vol. 178(C), pages 294-307.
    5. Xu, Haoran & Chen, Bin & Liu, Jiang & Ni, Meng, 2016. "Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration," Applied Energy, Elsevier, vol. 178(C), pages 353-362.
    6. Jiang, Yidong & Gu, Xin & Shi, Jixin & Shi, Yixiang & Cai, Ningsheng, 2023. "Co-generation of gas and electricity on liquid antimony anode solid oxide fuel cells for high efficiency, long-term kerosene power generation," Energy, Elsevier, vol. 263(PC).
    7. Chen, Qianyang & Qiu, Qianyuan & Yan, Xiaomin & Zhou, Mingyang & Zhang, Yapeng & Liu, Zhijun & Cai, Weizi & Wang, Wei & Liu, Jiang, 2020. "A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application," Applied Energy, Elsevier, vol. 278(C).
    8. Mushtaq, Usman & Mehran, Muhammad Taqi & Kim, Sun-Kyoung & Lim, Tak-Hyoung & Naqvi, Syed Asad Ali & Lee, Jong-Won & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun, 2017. "Evaluation of steady-state characteristics for solid oxide carbon fuel cell short-stacks," Applied Energy, Elsevier, vol. 187(C), pages 886-898.
    9. Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
    10. Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.
    11. Gu, Xiaofeng & Yan, Xiaomin & Zhou, Mingyang & Zou, Gaochang & Fan, Zidai & Liu, Jiang, 2024. "High efficiency electricity and gas cogeneration through direct carbon solid oxide fuel cell with cotton stalk biochar," Renewable Energy, Elsevier, vol. 226(C).
    12. Qu, Jifa & Wang, Wei & Chen, Yubo & Deng, Xiang & Shao, Zongping, 2016. "Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures," Applied Energy, Elsevier, vol. 164(C), pages 563-571.
    13. Yuan, Xiuqi & Chen, Huili & Tian, Wenjuan & Shi, Jing & Zhou, Wei & Cheng, Fangqin & Li, Si-Dian & Shao, Zongping, 2020. "Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell," Renewable Energy, Elsevier, vol. 147(P1), pages 602-609.
    14. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    15. Cao, Tianyu & Shi, Yixiang & Jiang, Yanqi & Cai, Ningsheng & Gong, Qianming, 2017. "Performance enhancement of liquid antimony anode fuel cell by in-situ electrochemical assisted oxidation process," Energy, Elsevier, vol. 125(C), pages 526-532.
    16. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    18. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    19. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    20. Marek Skrzypkiewicz & Michal Wierzbicki & Stanislaw Jagielski & Yevgeniy Naumovich & Konrad Motylinski & Jakub Kupecki & Agnieszka Zurawska & Magdalena Kosiorek, 2022. "Influence of the Contamination of Fuel with Fly Ash Originating from Biomass Gasification on the Performance of the Anode-Supported SOFC," Energies, MDPI, vol. 15(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:224:y:2018:i:c:p:280-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.