IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v346y2023ics0306261923007717.html
   My bibliography  Save this article

Effect of temperature and heat flux boundary conditions on hydrogen production in membrane-integrated steam-methane reformer

Author

Listed:
  • Ben-Mansour, R.
  • Haque, M.A.
  • Habib, M.A.
  • Paglieri, S.
  • Harale, A.
  • Mokheimer, E.M.A.

Abstract

In order to operate reforming plants at maximum efficiency it is important to investigate their operation under various conditions. This study aims to perform a comprehensive computational analysis to examine the effect of thermal boundary conditions on SMR and hydrogen recovery and, consequently, enriching the literature on hydrogen generation through steam-methane reforming. The studied thermal boundary conditions include constant and variable inlet temperature, outer wall temperature, and heat flux on outer wall of the reactor. A constant inlet flow rate of 0.001 kg/s (methane mass flow rate = 0.00018 kg/s), steam-to-methane ratio (or steam-to-carbon ratio, i.e., S/C) of 4 is considered in the reformer side for all the cases. Furthermore, the difference of pressure between both faces of the membrane is kept constant. Sweeping flow is incorporated to further raise the hydrogen partial pressure difference. Steam with flow rate of 0.001 kg/s is used to induce the sweeping effect throughout the study. Constant and variable temperatures/heat fluxes along with the effect of radiation in the reformer and transient inlet temperatures are examined in this study in terms of CH4 conversion ( %), H2 recovery ( %), H2 mass flow rates (kg/s), hydrogen mass flux through the membrane (kg.m−2. s−1), and other important parameters. About 1.7 times increase in methane conversion is noted as the reformer temperature is increased from 500 to 700 °C. The hydrogen recovery is found to decrease with the increase in temperature. Around 57 % and 56 % decrease in methane conversion and 42 % and 11.5 % rise in hydrogen recovery is observed with segmented case as compared to the constant heat flux and constant temperature cases, respectively. As compared to the reference 600 °C constant wall temperature, the increasing temperature profile results in 10.6 % rise in methane reforming and 11.2 % drop in the recovery of hydrogen. On the other hand, the decreasing temperature profile demonstrates 9.4 % decrease in conversion and 10.2 % elevation in recovery rate in contrast with the constant temperature case.

Suggested Citation

  • Ben-Mansour, R. & Haque, M.A. & Habib, M.A. & Paglieri, S. & Harale, A. & Mokheimer, E.M.A., 2023. "Effect of temperature and heat flux boundary conditions on hydrogen production in membrane-integrated steam-methane reformer," Applied Energy, Elsevier, vol. 346(C).
  • Handle: RePEc:eee:appene:v:346:y:2023:i:c:s0306261923007717
    DOI: 10.1016/j.apenergy.2023.121407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923007717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadaleti, Willian Cézar & Przybyla, Grzegorz, 2018. "Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in southern Brazilian rice industries," Energy, Elsevier, vol. 154(C), pages 38-51.
    2. Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongju Da & Degang Xu & Jufeng Li & Zhihe Tang & Jiaxin Li & Chen Wang & Hui Luan & Fang Zhang & Yong Zeng, 2023. "Influencing Factors of Carbon Emission from Typical Refining Units: Identification, Analysis, and Mitigation Potential," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjie Chen & Baofang Liu & Xuhui Gao & Deguang Xu, 2018. "RETRACTED: Production of Hydrogen by Methane Steam Reforming Coupled with Catalytic Combustion in Integrated Microchannel Reactors," Energies, MDPI, vol. 11(8), pages 1, August.
    2. Lei, Libin & Mo, Yingyu & Huang, Yue & Qiu, Ruiming & Tian, Zhipeng & Wang, Junyao & Liu, Jianping & Chen, Ying & Zhang, Jihao & Tao, Zetian & Liang, Bo & Wang, Chao, 2023. "Revealing and quantifying the role of oxygen-ionic current in proton-conducting solid oxide fuel cells: A modeling study," Energy, Elsevier, vol. 276(C).
    3. Berre Kumuk & Nisa Nur Atak & Battal Dogan & Salih Ozer & Pinar Demircioglu & Ismail Bogrekci, 2024. "Numerical and Thermodynamic Analysis of the Effect of Operating Temperature in Methane-Fueled SOFC," Energies, MDPI, vol. 17(11), pages 1-17, May.
    4. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    5. Zhang, Yidan & Zhu, Ankang & Guo, Youmin & Wang, Chunchang & Ni, Meng & Yu, Hao & Zhang, Chuanhui & Shao, Zongping, 2019. "Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 344-350.
    6. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    7. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Baruah, Abhinandan & Basu, Mousumi & Amuley, Deeshank, 2021. "Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Fan Liu & Chuancheng Duan, 2021. "Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells," Sustainability, MDPI, vol. 13(9), pages 1-9, April.
    10. Rodrigues Silveira, Andrei Rei & Nadaleti, Willian Cézar & Przybyla, Grzegorz & Belli Filho, Paulo, 2019. "Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy," Renewable Energy, Elsevier, vol. 134(C), pages 1003-1016.
    11. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Diego Perrone & Teresa Castiglione & Pietropaolo Morrone & Ferdinando Pantano & Sergio Bova, 2023. "Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification," Energies, MDPI, vol. 16(19), pages 1-22, September.
    13. Luigi De Simio & Sabato Iannaccone & Massimo Masi & Paolo Gobbato, 2022. "Experimental Study and Optimisation of a Non-Conventional Ignition System for Reciprocating Engines Operation with Hydrogen–Methane Blends, Syngas, and Biogas," Energies, MDPI, vol. 15(21), pages 1-21, November.
    14. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    15. Bui, Van Ga & Tu Bui, Thi Minh & Ong, Hwai Chyuan & Nižetić, Sandro & Bui, Van Hung & Xuan Nguyen, Thi Thanh & Atabani, A.E. & Štěpanec, Libor & Phu Pham, Le Hoang & Hoang, Anh Tuan, 2022. "Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system," Energy, Elsevier, vol. 252(C).
    16. Abdullah Ebrahem Ebrahemi & Mohamed Abdallah Bassiony & Thaer Mahmoud Ibrahim Syam & Samer Ahmed, 2020. "Investigating the effect of the air inlet temperature on the combustion characteristics of a spark ignition engine fueled by biogas," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 771-782, August.
    17. Dai, Huidong & Besser, R.S., 2022. "Understanding hydrogen sulfide impact on a portable, commercial, propane-powered solid-oxide fuel cell," Applied Energy, Elsevier, vol. 307(C).
    18. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Li, Hu, 2021. "Investigation of ethyl biodiesel via transesterification of rice bran oil: bioenergy from residual biomass in Pelotas, Rio Grande do Sul - Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Tran, Trung Kien & Lin, Chia-Yang & Tu, Yu-Te & Duong, Nam Tien & Pham Thi, Thuy Dung & Shoh-Jakhon, Khamdamov, 2023. "Nexus between natural resource depletion and rent and COP26 commitments: Empirical evidence from Vietnam," Resources Policy, Elsevier, vol. 85(PB).
    20. Vivek Pandey & Kiran Hanmanthrao Shahapurkar & Suresh Guluwadi & Getinet Asrat Mengesha & Bekele Gadissa & Nagaraj Ramalingayya Banapurmath & Chandramouli Vadlamudi & Sanjay Krishnappa & T. M. Yunus K, 2023. "Studies on the Performance of Engines Powered with Hydrogen-Enriched Biogas," Energies, MDPI, vol. 16(11), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:346:y:2023:i:c:s0306261923007717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.