Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.11.050
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiao, Yong & Tian, Wenjuan & Chen, Huili & Shi, Huangang & Yang, Binbin & Li, Chao & Shao, Zongping & Zhu, Zhenping & Li, Si-Dian, 2015. "In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance," Applied Energy, Elsevier, vol. 141(C), pages 200-208.
- Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
- Wang, Hongjian & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Yuan, Wei, 2014. "Liquid antimony anode direct carbon fuel cell fueled with mass-produced de-ash coal," Energy, Elsevier, vol. 75(C), pages 555-559.
- Bang-Møller, C. & Rokni, M. & Elmegaard, B. & Ahrenfeldt, J. & Henriksen, U.B., 2013. "Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells," Energy, Elsevier, vol. 58(C), pages 527-537.
- Rady, Adam C. & Giddey, Sarbjit & Kulkarni, Aniruddha & Badwal, Sukhvinder P.S. & Bhattacharya, Sankar & Ladewig, Bradley P., 2014. "Direct carbon fuel cell operation on brown coal," Applied Energy, Elsevier, vol. 120(C), pages 56-64.
- Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
- Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
- Xu, Haoran & Chen, Bin & Liu, Jiang & Ni, Meng, 2016. "Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration," Applied Energy, Elsevier, vol. 178(C), pages 353-362.
- Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
- Jiang, Yidong & Gu, Xin & Shi, Jixin & Shi, Yixiang & Cai, Ningsheng, 2023. "Co-generation of gas and electricity on liquid antimony anode solid oxide fuel cells for high efficiency, long-term kerosene power generation," Energy, Elsevier, vol. 263(PC).
- Mushtaq, Usman & Mehran, Muhammad Taqi & Kim, Sun-Kyoung & Lim, Tak-Hyoung & Naqvi, Syed Asad Ali & Lee, Jong-Won & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun, 2017. "Evaluation of steady-state characteristics for solid oxide carbon fuel cell short-stacks," Applied Energy, Elsevier, vol. 187(C), pages 886-898.
- Lei, Libin & Wang, Yao & Fang, Shumin & Ren, Cong & Liu, Tong & Chen, Fanglin, 2016. "Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis," Applied Energy, Elsevier, vol. 173(C), pages 52-58.
- Cao, Tianyu & Shi, Yixiang & Jiang, Yanqi & Cai, Ningsheng & Gong, Qianming, 2017. "Performance enhancement of liquid antimony anode fuel cell by in-situ electrochemical assisted oxidation process," Energy, Elsevier, vol. 125(C), pages 526-532.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
- Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
- Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
- Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
- Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
- Qu, Jifa & Wang, Wei & Chen, Yubo & Wang, Feng & Ran, Ran & Shao, Zongping, 2015. "Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes," Applied Energy, Elsevier, vol. 148(C), pages 1-9.
- Gu, Xiaofeng & Yan, Xiaomin & Zhou, Mingyang & Zou, Gaochang & Fan, Zidai & Liu, Jiang, 2024. "High efficiency electricity and gas cogeneration through direct carbon solid oxide fuel cell with cotton stalk biochar," Renewable Energy, Elsevier, vol. 226(C).
- Chen, Qianyang & Qiu, Qianyuan & Yan, Xiaomin & Zhou, Mingyang & Zhang, Yapeng & Liu, Zhijun & Cai, Weizi & Wang, Wei & Liu, Jiang, 2020. "A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application," Applied Energy, Elsevier, vol. 278(C).
- Qu, Jifa & Wang, Wei & Chen, Yubo & Deng, Xiang & Shao, Zongping, 2016. "Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures," Applied Energy, Elsevier, vol. 164(C), pages 563-571.
- Wu, Hao & Xiao, Jie & Zeng, Xiaoyuan & Li, Xue & Yang, Jing & Zou, Yuling & Liu, Sudongfang & Dong, Peng & Zhang, Yingjie & Liu, Jiang, 2019. "A high performance direct carbon solid oxide fuel cell – A green pathway for brown coal utilization," Applied Energy, Elsevier, vol. 248(C), pages 679-687.
- Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
- Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
- Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
- Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
- Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
- Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
- Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
- Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
- Saurabh Singh & Raghvendra Pandey & Sabrina Presto & Maria Paola Carpanese & Antonio Barbucci & Massimo Viviani & Prabhakar Singh, 2019. "Suitability of Sm 3+ - Substituted SrTiO 3 as Anode Materials for Solid Oxide Fuel Cells: A Correlation between Structural and Electrical Properties," Energies, MDPI, vol. 12(21), pages 1-16, October.
More about this item
Keywords
Solid oxide fuel cells; Biomass carbon fuel; Molten antimony anode; Fuel utilization; Electrical efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:983-989. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.