Performance enhancement of liquid antimony anode fuel cell by in-situ electrochemical assisted oxidation process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.02.106
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Hongjian & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Yuan, Wei, 2014. "Liquid antimony anode direct carbon fuel cell fueled with mass-produced de-ash coal," Energy, Elsevier, vol. 75(C), pages 555-559.
- Giddey, S. & Kulkarni, A. & Munnings, C. & Badwal, S.P.S., 2014. "Performance evaluation of a tubular direct carbon fuel cell operating in a packed bed of carbon," Energy, Elsevier, vol. 68(C), pages 538-547.
- Duan, Nan-Qi & Tan, Yuan & Yan, Dong & Jia, Lichao & Chi, Bo & Pu, Jian & Li, Jian, 2016. "Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode," Applied Energy, Elsevier, vol. 165(C), pages 983-989.
- Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
- Ahn, Seong Yool & Eom, Seong Yong & Rhie, Young Hoon & Sung, Yon Mo & Moon, Cheor Eon & Choi, Gyung Min & Kim, Duck Jool, 2013. "Application of refuse fuels in a direct carbon fuel cell system," Energy, Elsevier, vol. 51(C), pages 447-456.
- Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
- Eom, Seongyong & Ahn, Seongyool & Rhie, Younghoon & Kang, Kijoong & Sung, Yonmo & Moon, Cheoreon & Choi, Gyungmin & Kim, Duckjool, 2014. "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system," Energy, Elsevier, vol. 74(C), pages 734-740.
- Zhang, Houcheng & Chen, Liwei & Zhang, Jinjie & Chen, Jincan, 2014. "Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte," Energy, Elsevier, vol. 68(C), pages 292-300.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
- Eom, Seongyong & Ahn, Seongyool & Kang, Kijoong & Choi, Gyungmin, 2017. "Correlations between electrochemical resistances and surface properties of acid-treated fuel in coal fuel cells," Energy, Elsevier, vol. 140(P1), pages 885-892.
- Jiang, Yidong & Gu, Xin & Shi, Jixin & Shi, Yixiang & Cai, Ningsheng, 2023. "Co-generation of gas and electricity on liquid antimony anode solid oxide fuel cells for high efficiency, long-term kerosene power generation," Energy, Elsevier, vol. 263(PC).
- Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
- Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
- Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
- Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
- Lei, Libin & Wang, Yao & Fang, Shumin & Ren, Cong & Liu, Tong & Chen, Fanglin, 2016. "Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis," Applied Energy, Elsevier, vol. 173(C), pages 52-58.
- Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Eom, Seongyong & Na, Sangkyung & Ahn, Seongyool & Choi, Gyungmin, 2022. "Electrochemical conversion of CO2 using different electrode materials in an Li–K molten salt system," Energy, Elsevier, vol. 245(C).
- Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
- Ahmadi, Mohammad H. & Jokar, Mohammad Ali & Ming, Tingzhen & Feidt, Michel & Pourfayaz, Fathollah & Astaraei, Fatemeh Razi, 2018. "Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach," Energy, Elsevier, vol. 144(C), pages 707-722.
- Eom, Seongyong & Ahn, Seongyool & Rhie, Younghoon & Kang, Kijoong & Sung, Yonmo & Moon, Cheoreon & Choi, Gyungmin & Kim, Duckjool, 2014. "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system," Energy, Elsevier, vol. 74(C), pages 734-740.
- Zhang, Houcheng & Chen, Liwei & Zhang, Jinjie & Chen, Jincan, 2014. "Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte," Energy, Elsevier, vol. 68(C), pages 292-300.
- Mushtaq, Usman & Mehran, Muhammad Taqi & Kim, Sun-Kyoung & Lim, Tak-Hyoung & Naqvi, Syed Asad Ali & Lee, Jong-Won & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun, 2017. "Evaluation of steady-state characteristics for solid oxide carbon fuel cell short-stacks," Applied Energy, Elsevier, vol. 187(C), pages 886-898.
- Heidarian, Alireza & Cheung, Sherman C.P. & Ojha, Ruchika & Rosengarten, Gary, 2022. "Effects of current collector shape and configuration on charge percolation and electric conductivity of slurry electrodes for electrochemical systems," Energy, Elsevier, vol. 239(PD).
- Hao, Wenbin & Ma, Hongyan & Sun, Guoxing & Li, Zongjin, 2019. "Magnesia phosphate cement composite bipolar plates for passive type direct methanol fuel cells," Energy, Elsevier, vol. 168(C), pages 80-87.
- Ye, Luhan & Lv, Weiqiang & Zhang, Kelvin H.L. & Wang, Xiaoning & Yan, Pengfei & Dickerson, James H. & He, Weidong, 2015. "A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries," Energy, Elsevier, vol. 83(C), pages 669-673.
- Duan, Nan-Qi & Tan, Yuan & Yan, Dong & Jia, Lichao & Chi, Bo & Pu, Jian & Li, Jian, 2016. "Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode," Applied Energy, Elsevier, vol. 165(C), pages 983-989.
- Zhan, Honglei & Zhao, Kun & Xiao, Lizhi, 2015. "Spectral characterization of the key parameters and elements in coal using terahertz spectroscopy," Energy, Elsevier, vol. 93(P1), pages 1140-1145.
More about this item
Keywords
Liquid metal anode; Fuel cell; Antimony; In-situ performance enhancement; Assisted oxidation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:125:y:2017:i:c:p:526-532. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.