IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp563-571.html
   My bibliography  Save this article

Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures

Author

Listed:
  • Qu, Jifa
  • Wang, Wei
  • Chen, Yubo
  • Deng, Xiang
  • Shao, Zongping

Abstract

In this study, some basic oxide additives are introduced into the conventional Ni–Ce0.8Sm0.2O1.9 (SDC) cermet anodes of solid oxide fuel cells (SOFCs) for using methane as the fuel. The effects of incorporating basic oxides on the phase composition, electrical conductivity, microstructure, coking tolerance and catalytic/electrocatalytic activity of the anodes are systematically studied. The basic oxide content and the possible phase reactions in the composite anode have considerable effects on the chemical interactions, electrical conductivities and coking resistances of the cermet anodes. The CaO-modified Ni–SDC anode exhibits higher catalytic performance and/or superior coking tolerance than the Ni–SDC and BaO, SrO, MgO, La2O3-modified Ni–SDC anodes under methane steam reforming conditions. The SOFC with a CaO-modified Ni–SDC anode delivers a much higher power generation than the cells composed of the pristine and BaO-modified Ni–SDC anodes using humidified methane fuel at intermediate temperatures. The improved coking resistance of the CaO-modified Ni–SDC anode results in a more stable voltage in the durability test using methane fuel than the cell with a Ni–SDC anode under the same test conditions. In summary, the CaO-modified Ni–SDC composite is a potential coking-resistant and active anode material for SOFCs that use methane as fuel.

Suggested Citation

  • Qu, Jifa & Wang, Wei & Chen, Yubo & Deng, Xiang & Shao, Zongping, 2016. "Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures," Applied Energy, Elsevier, vol. 164(C), pages 563-571.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:563-571
    DOI: 10.1016/j.apenergy.2015.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915015846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Yong & Tian, Wenjuan & Chen, Huili & Shi, Huangang & Yang, Binbin & Li, Chao & Shao, Zongping & Zhu, Zhenping & Li, Si-Dian, 2015. "In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance," Applied Energy, Elsevier, vol. 141(C), pages 200-208.
    2. Xu, Xiaoyong & Zhou, Wei & Liang, Fengli & Zhu, Zhonghua, 2013. "A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell," Applied Energy, Elsevier, vol. 108(C), pages 402-409.
    3. Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
    4. Qu, Jifa & Wang, Wei & Chen, Yubo & Wang, Feng & Ran, Ran & Shao, Zongping, 2015. "Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes," Applied Energy, Elsevier, vol. 148(C), pages 1-9.
    5. Papurello, D. & Borchiellini, R. & Bareschino, P. & Chiodo, V. & Freni, S. & Lanzini, A. & Pepe, F. & Ortigoza, G.A. & Santarelli, M, 2014. "Performance of a Solid Oxide Fuel Cell short-stack with biogas feeding," Applied Energy, Elsevier, vol. 125(C), pages 254-263.
    6. Hong, Wen-Tang & Yen, Tzu-Hsiang & Chung, Tsang-Dong & Huang, Cheng-Nan & Chen, Bao-Dong, 2011. "Efficiency analyses of ethanol-fueled solid oxide fuel cell power system," Applied Energy, Elsevier, vol. 88(11), pages 3990-3998.
    7. Seungdoo Park & John M. Vohs & Raymond J. Gorte, 2000. "Direct oxidation of hydrocarbons in a solid-oxide fuel cell," Nature, Nature, vol. 404(6775), pages 265-267, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
    2. Jia, Weihua & Wang, Yuqi & Huang, Jianbing & Li, Mengran & Xiang, Benlin & Wang, Yue & Wu, Le & Zheng, Lan & Ge, Lei, 2024. "Alternative B-site-doped La0.6Sr0.4Co0.2Fe0.8-xMxO3 (M = Ni, Cu, Nb; x = 0, 0.1, 0.2) as innovative cathode material for LT-SOFC with enhanced charge transfer and oxygen ion diffusion," Applied Energy, Elsevier, vol. 353(PB).
    3. Zheng Li & Guogang Yang & Qiuwan Shen & Shian Li & Hao Wang & Jiadong Liao & Ziheng Jiang & Guoling Zhang, 2022. "Transient Multi-Physics Modeling and Performance Degradation Evaluation of Direct Internal Reforming Solid Oxide Fuel Cell Focusing on Carbon Deposition Effect," Energies, MDPI, vol. 16(1), pages 1-20, December.
    4. Yuan, Xiuqi & Chen, Huili & Tian, Wenjuan & Shi, Jing & Zhou, Wei & Cheng, Fangqin & Li, Si-Dian & Shao, Zongping, 2020. "Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell," Renewable Energy, Elsevier, vol. 147(P1), pages 602-609.
    5. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
    6. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    7. Aslannejad, H. & Barelli, L. & Babaie, A. & Bozorgmehri, S., 2016. "Effect of air addition to methane on performance stability and coking over NiO–YSZ anodes of SOFC," Applied Energy, Elsevier, vol. 177(C), pages 179-186.
    8. Xu, Han & Dang, Zheng, 2016. "Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming," Applied Energy, Elsevier, vol. 178(C), pages 294-307.
    9. Steil, M.C. & Nobrega, S.D. & Georges, S. & Gelin, P. & Uhlenbruck, S. & Fonseca, F.C., 2017. "Durable direct ethanol anode-supported solid oxide fuel cell," Applied Energy, Elsevier, vol. 199(C), pages 180-186.
    10. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    2. Xu, Han & Dang, Zheng, 2016. "Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming," Applied Energy, Elsevier, vol. 178(C), pages 294-307.
    3. Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
    4. Qu, Jifa & Wang, Wei & Chen, Yubo & Wang, Feng & Ran, Ran & Shao, Zongping, 2015. "Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes," Applied Energy, Elsevier, vol. 148(C), pages 1-9.
    5. Hu, Boxun & Keane, Michael & Patil, Kailash & Mahapatra, Manoj K. & Pasaogullari, Ugur & Singh, Prabhakar, 2014. "Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells," Applied Energy, Elsevier, vol. 134(C), pages 342-348.
    6. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    7. Duan, Nan-Qi & Tan, Yuan & Yan, Dong & Jia, Lichao & Chi, Bo & Pu, Jian & Li, Jian, 2016. "Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode," Applied Energy, Elsevier, vol. 165(C), pages 983-989.
    8. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    9. Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
    10. Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
    11. Sariboğa, Vedat & Öksüzömer, Faruk, 2012. "The investigation of active Ni/YSZ interlayer for Cu-based direct-methane solid oxide fuel cells," Applied Energy, Elsevier, vol. 93(C), pages 707-721.
    12. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    13. Xu, Haoran & Chen, Bin & Liu, Jiang & Ni, Meng, 2016. "Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration," Applied Energy, Elsevier, vol. 178(C), pages 353-362.
    14. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    15. Ortiz-Vitoriano, N. & Bernuy-López, C. & Ruiz de Larramendi, I. & Knibbe, R. & Thydén, K. & Hauch, A. & Holtappels, P. & Rojo, T., 2013. "Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation," Applied Energy, Elsevier, vol. 104(C), pages 984-991.
    16. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    17. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    18. Marek Skrzypkiewicz & Michal Wierzbicki & Stanislaw Jagielski & Yevgeniy Naumovich & Konrad Motylinski & Jakub Kupecki & Agnieszka Zurawska & Magdalena Kosiorek, 2022. "Influence of the Contamination of Fuel with Fly Ash Originating from Biomass Gasification on the Performance of the Anode-Supported SOFC," Energies, MDPI, vol. 15(4), pages 1-17, February.
    19. Ding, Jing & Pan, Gechuanqi & Du, Lichan & Lu, Jianfeng & Wang, Weilong & Wei, Xiaolan & Li, Jiang, 2018. "Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3," Applied Energy, Elsevier, vol. 227(C), pages 555-563.
    20. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:563-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.