IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp826-843.html
   My bibliography  Save this article

A new predictive multi-zone model for HCCI engine combustion

Author

Listed:
  • Bissoli, M.
  • Frassoldati, A.
  • Cuoci, A.
  • Ranzi, E.
  • Mehl, M.
  • Faravelli, T.

Abstract

This work introduces a new predictive multi-zone model for the description of combustion in Homogeneous Charge Compression Ignition (HCCI) engines. The model exploits the existing OpenSMOKE++ computational suite to handle detailed kinetic mechanisms, providing reliable predictions of the in-cylinder auto-ignition processes. All the elements with a significant impact on the combustion performances and emissions, like turbulence, heat and mass exchanges, crevices, residual burned gases, thermal and feed stratification are taken into account. Compared to other computational approaches, this model improves the description of mixture stratification phenomena by coupling a wall heat transfer model derived from CFD application with a proper turbulence model. Furthermore, the calibration of this multi-zone model requires only three parameters, which can be derived from a non-reactive CFD simulation: these adaptive variables depend only on the engine geometry and remain fixed across a wide range of operating conditions, allowing the prediction of auto-ignition, pressure traces and pollutants. This computational framework enables the use of detail kinetic mechanisms, as well as Rate of Production Analysis (RoPA) and Sensitivity Analysis (SA) to investigate the complex chemistry involved in the auto-ignition and the pollutants formation processes. In the final sections of the paper, these capabilities are demonstrated through the comparison with experimental data.

Suggested Citation

  • Bissoli, M. & Frassoldati, A. & Cuoci, A. & Ranzi, E. & Mehl, M. & Faravelli, T., 2016. "A new predictive multi-zone model for HCCI engine combustion," Applied Energy, Elsevier, vol. 178(C), pages 826-843.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:826-843
    DOI: 10.1016/j.apenergy.2016.06.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, C.D. & Kosmadakis, G.M. & Pariotis, E.G., 2010. "Critical evaluation of current heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation," Applied Energy, Elsevier, vol. 87(5), pages 1612-1630, May.
    2. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    3. Fathi, Morteza & Saray, R. Khoshbakhti & Checkel, M. David, 2011. "The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 88(12), pages 4719-4724.
    4. Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
    5. Komninos, N.P. & Kosmadakis, G.M., 2011. "Heat transfer in HCCI multi-zone modeling: Validation of a new wall heat flux correlation under motoring conditions," Applied Energy, Elsevier, vol. 88(5), pages 1635-1648, May.
    6. Komninos, N.P., 2015. "The effect of thermal stratification on HCCI combustion: A numerical investigation," Applied Energy, Elsevier, vol. 139(C), pages 291-302.
    7. Zheng, Zhaolei & Lv, Zhumei, 2015. "A new skeletal chemical kinetic model of gasoline surrogate fuel with nitric oxide in HCCI combustion," Applied Energy, Elsevier, vol. 147(C), pages 59-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Ao & Zhang, Chunhua & Li, Yangyang & Li, Songfeng & Yin, Peng, 2019. "Effect of hydrogen peroxide additive on the combustion and emission characteristics of an n-butanol homogeneous charge compression ignition engine," Energy, Elsevier, vol. 169(C), pages 572-579.
    2. Kocakulak, Tolga & Babagiray, Mustafa & Nacak, Çağatay & Safieddin Ardebili, Seyed Mohammad & Calam, Alper & Solmaz, Hamit, 2022. "Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends," Renewable Energy, Elsevier, vol. 182(C), pages 827-841.
    3. Hunicz, Jacek & Mikulski, Maciej, 2018. "Investigation of the thermal effects of fuel injection into retained residuals in HCCI engine," Applied Energy, Elsevier, vol. 228(C), pages 1966-1984.
    4. Alrbai, Mohammad & Ahmad, Adnan Darwish & Al-Dahidi, Sameer & Abubaker, Ahmad M. & Al-Ghussain, Loiy & Alahmer, Ali & Akafuah, Nelson K., 2023. "Performance and sensitivity analysis of raw biogas combustion under homogenous charge compression ignition conditions," Energy, Elsevier, vol. 283(C).
    5. Youcef Sehili & Khaled Loubar & Lyes Tarabet & Mahfoudh Cerdoun & Clément Lacroix, 2023. "Development of Predictive Model for Hydrogen-Natural Gas/Diesel Dual Fuel Engine," Energies, MDPI, vol. 16(19), pages 1-19, October.
    6. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    7. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    8. Broekaert, Stijn & De Cuyper, Thomas & De Paepe, Michel & Verhelst, Sebastian, 2017. "Evaluation of empirical heat transfer models for HCCI combustion in a CFR engine," Applied Energy, Elsevier, vol. 205(C), pages 1141-1150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    2. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    3. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    4. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    5. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    6. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
    7. Decan, Gilles & Broekaert, Stijn & Lucchini, Tommaso & D’Errico, Gianluca & Vierendeels, Jan & Verhelst, Sebastian, 2018. "Evaluation of wall heat flux calculation methods for CFD simulations of an internal combustion engine under both motored and HCCI operation," Applied Energy, Elsevier, vol. 232(C), pages 451-461.
    8. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    9. Aydoğan, Bilal, 2020. "An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine," Energy, Elsevier, vol. 192(C).
    10. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    11. Visakhamoorthy, Sona & Wen, John Z. & Sivoththaman, Siva & Koch, Charles Robert, 2012. "Numerical study of a butanol/heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine utilizing negative valve overlap," Applied Energy, Elsevier, vol. 94(C), pages 166-173.
    12. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    13. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    14. Yang, Binbin & Yao, Mingfa & Cheng, Wai K. & Li, Yu & Zheng, Zunqing & Li, Shanju, 2014. "Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel," Applied Energy, Elsevier, vol. 113(C), pages 722-733.
    15. Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2012. "Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique," Applied Energy, Elsevier, vol. 99(C), pages 116-125.
    16. Wu, Zhijun & Kang, Zhe & Deng, Jun & Hu, Zongjie & Li, Liguang, 2016. "Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine," Applied Energy, Elsevier, vol. 184(C), pages 594-604.
    17. Viggiano, Annarita & Magi, Vinicio, 2012. "A comprehensive investigation on the emissions of ethanol HCCI engines," Applied Energy, Elsevier, vol. 93(C), pages 277-287.
    18. Soo-Jin Jeong, 2024. "CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review," Energies, MDPI, vol. 17(18), pages 1-39, September.
    19. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    20. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:826-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.