CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wei, Haiqiao & Zhu, Tianyu & Shu, Gequn & Tan, Linlin & Wang, Yuesen, 2012. "Gasoline engine exhaust gas recirculation – A review," Applied Energy, Elsevier, vol. 99(C), pages 534-544.
- Rakopoulos, C.D. & Kosmadakis, G.M. & Pariotis, E.G., 2010. "Critical evaluation of current heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation," Applied Energy, Elsevier, vol. 87(5), pages 1612-1630, May.
- Biswas, Sayan & Qiao, Li, 2018. "Ignition of ultra-lean premixed hydrogen/air by an impinging hot jet," Applied Energy, Elsevier, vol. 228(C), pages 954-964.
- Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
- Gentz, Gerald & Gholamisheeri, Masumeh & Toulson, Elisa, 2017. "A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization," Applied Energy, Elsevier, vol. 189(C), pages 385-394.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Novella, R. & Gomez-Soriano, J. & Barbery, I. & Martinez-Hernandiz, P.J., 2024. "Exploring the passive the pre-chamber ignition concept for spark-ignition engines fueled with natural gas under EGR-diluted conditions," Energy, Elsevier, vol. 294(C).
- da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
- Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
- Yang, Jingxun & Xie, Fangxi & Jiang, Beiping & Li, Xiaoping & Su, Yan & Zhang, Hao, 2024. "Influence of structure parameters of pre-chamber on lean combustion of active pre-chamber jet ignition engine," Energy, Elsevier, vol. 304(C).
- Ju, Dehao & Huang, Zhong & Li, Xiang & Zhang, Tingting & Cai, Weiwei, 2020. "Comparison of open chamber and pre-chamber ignition of methane/air mixtures in a large bore constant volume chamber: Effect of excess air ratio and pre-mixed pressure," Applied Energy, Elsevier, vol. 260(C).
- Nyamsuren Gombosuren & Ogami Yoshifumi & Asada Hiroyuki, 2020. "A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine," Energies, MDPI, vol. 13(2), pages 1-17, January.
- López, J.J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Rampanarivo, F. & Libert, C. & Dabiri, M., 2021. "Advantages of the unscavenged pre-chamber ignition system in turbocharged natural gas engines for automotive applications," Energy, Elsevier, vol. 218(C).
- Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
- Yang, Zhimin & Zhang, Yanchao & Dong, Qingchun & Lin, Jian & Lin, Guoxing & Chen, Jincan, 2018. "Maximum power output and parametric choice criteria of a thermophotovoltaic cell driven by automobile exhaust," Renewable Energy, Elsevier, vol. 121(C), pages 28-35.
- Dardiotis, Christos & Martini, Giorgio & Marotta, Alessandro & Manfredi, Urbano, 2013. "Low-temperature cold-start gaseous emissions of late technology passenger cars," Applied Energy, Elsevier, vol. 111(C), pages 468-478.
- Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
- Reihani, Amin & Hoard, John & Klinkert, Stefan & Kuan, Chih-Kuang & Styles, Daniel & McConville, Greg, 2020. "Experimental response surface study of the effects of low-pressure exhaust gas recirculation mixing on turbocharger compressor performance," Applied Energy, Elsevier, vol. 261(C).
- Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
- García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
- Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
- Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
- Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
- Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
- Hammam Aljabri & Mickael Silva & Moez Ben Houidi & Xinlei Liu & Moaz Allehaibi & Fahad Almatrafi & Abdullah S. AlRamadan & Balaji Mohan & Emre Cenker & Hong G. Im, 2022. "Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach," Energies, MDPI, vol. 15(23), pages 1-21, November.
- Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
More about this item
Keywords
pre-chamber ignition engine; turbulent jet ignition; computational fluid dynamics; turbulence–chemistry interaction; wall heat transfer; combustion model; turbulence model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4696-:d:1482231. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.