IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219322959.html
   My bibliography  Save this article

An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine

Author

Listed:
  • Aydoğan, Bilal

Abstract

Homogenous charge compression ignition (HCCI) engines are low-temperature combustion engines with high thermal efficiency. The operation range of HCCI engines, which are not directly controlled on combustion, is limited by the problems of knocking and misfiring. At this point, it is aimed to eliminate the problem of knocking at the high engine loads by the charge mixture composition and various operating parameters. In this study, the experiments were performed in a single cylinder, four stroke, port injection HCCI gasoline engine to investigate the effects of n-hexane, n-heptane and n-hexane/n-heptane blends. Combustion characteristics, engine performance and exhaust emissions were determined at different engine speeds (800–1800 rpm), lambda (λ = 1.5–3.0) and inlet air temperatures (60 and 80 °C). Operating range of the HCCI engine was determined by using both pure n-hexane and pure n-heptane fuels. The experiments showed that n-hexane, which has higher octane number than that of n-heptane, has more resistance to knocking. In-cylinder pressure decreased with the increase of lambda for all test fuels. Thermal efficiency increased about 28% by using n-hexane compared to n-heptane at constant lambda (λ = 2.35). The results showed that H75N25 provided larger operating range compared with other test fuels.

Suggested Citation

  • Aydoğan, Bilal, 2020. "An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219322959
    DOI: 10.1016/j.energy.2019.116600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219322959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    2. Wu, Horng-Wen & Wang, Ren-Hung & Ou, Dung-Je & Chen, Ying-Chuan & Chen, Teng-yu, 2011. "Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air," Applied Energy, Elsevier, vol. 88(11), pages 3882-3890.
    3. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters," Applied Energy, Elsevier, vol. 88(4), pages 1153-1163, April.
    4. Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
    5. Calam, Alper & Solmaz, Hamit & Yılmaz, Emre & İçingür, Yakup, 2019. "Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine," Energy, Elsevier, vol. 168(C), pages 1208-1216.
    6. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2019. "Performance studies on homogeneous charge compression ignition (HCCI) engine powered with alternative fuels," Renewable Energy, Elsevier, vol. 132(C), pages 683-693.
    7. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    8. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    9. Lee, Kyeonghyeon & Cho, Seokwon & Kim, Namho & Min, Kyoungdoug, 2015. "A study on combustion control and operating range expansion of gasoline HCCI," Energy, Elsevier, vol. 91(C), pages 1038-1048.
    10. Lawler, Benjamin & Lacey, Joshua & Güralp, Orgun & Najt, Paul & Filipi, Zoran, 2018. "HCCI combustion with an actively controlled glow plug: The effects on heat release, thermal stratification, efficiency, and emissions," Applied Energy, Elsevier, vol. 211(C), pages 809-819.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
    2. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Kocakulak, Tolga & Babagiray, Mustafa & Nacak, Çağatay & Safieddin Ardebili, Seyed Mohammad & Calam, Alper & Solmaz, Hamit, 2022. "Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends," Renewable Energy, Elsevier, vol. 182(C), pages 827-841.
    4. Desantes, José M. & Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier, 2014. "The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency," Energy, Elsevier, vol. 78(C), pages 854-868.
    5. Yuh-Yih Wu & Ching-Tzan Jang, 2019. "Combustion Analysis of Homogeneous Charge Compression Ignition in a Motorcycle Engine Using a Dual-Fuel with Exhaust Gas Recirculation," Energies, MDPI, vol. 12(5), pages 1-21, March.
    6. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    7. Calam, Alper & Solmaz, Hamit & Yılmaz, Emre & İçingür, Yakup, 2019. "Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine," Energy, Elsevier, vol. 168(C), pages 1208-1216.
    8. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier & Durrett, Russell, 2014. "Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance," Applied Energy, Elsevier, vol. 129(C), pages 1-9.
    9. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    10. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    11. Wu, Zhijun & Kang, Zhe & Deng, Jun & Hu, Zongjie & Li, Liguang, 2016. "Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine," Applied Energy, Elsevier, vol. 184(C), pages 594-604.
    12. Viggiano, Annarita & Magi, Vinicio, 2012. "A comprehensive investigation on the emissions of ethanol HCCI engines," Applied Energy, Elsevier, vol. 93(C), pages 277-287.
    13. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    14. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    15. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Numerical investigation on selecting appropriate piston bowl geometry and compression ratio for gasoline-fuelled homogeneous charge compression ignited light-duty diesel engine," Energy, Elsevier, vol. 282(C).
    16. Jeftić, Marko & Zheng, Ming, 2015. "A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies," Applied Energy, Elsevier, vol. 157(C), pages 861-870.
    17. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    18. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    19. Nihal Mishra & Shubham Mitra & Abhishek Thapliyal & Aniket Mahajan & T. M. Yunus Khan & Sreekanth Manavalla & Rahmath Ulla Baig & Ayub Ahmed Janvekar & Feroskhan M, 2023. "Exploring the Effects of DEE Pilot Injection on a Biogas-Fueled HCCI Engine at Different Injection Locations," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    20. Saxena, Samveg & Schneider, Silvan & Aceves, Salvador & Dibble, Robert, 2012. "Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels," Applied Energy, Elsevier, vol. 98(C), pages 448-457.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219322959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.